Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 614(7948): 471-478, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36792738

RESUMO

Thwaites Glacier represents 15% of the ice discharge from the West Antarctic Ice Sheet and influences a wider catchment1-3. Because it is grounded below sea level4,5, Thwaites Glacier is thought to be susceptible to runaway retreat triggered at the grounding line (GL) at which the glacier reaches the ocean6,7. Recent ice-flow acceleration2,8 and retreat of the ice front8-10 and GL11,12 indicate that ice loss will continue. The relative impacts of mechanisms underlying recent retreat are however uncertain. Here we show sustained GL retreat from at least 2011 to 2020 and resolve mechanisms of ice-shelf melt at the submetre scale. Our conclusions are based on observations of the Thwaites Eastern Ice Shelf (TEIS) from an underwater vehicle, extending from the GL to 3 km oceanward and from the ice-ocean interface to the sea floor. These observations show a rough ice base above a sea floor sloping upward towards the GL and an ocean cavity in which the warmest water exceeds 2 °C above freezing. Data closest to the ice base show that enhanced melting occurs along sloped surfaces that initiate near the GL and evolve into steep-sided terraces. This pronounced melting along steep ice faces, including in crevasses, produces stratification that suppresses melt along flat interfaces. These data imply that slope-dependent melting sculpts the ice base and acts as an important response to ocean warming.

3.
J Chem Phys ; 155(19): 194301, 2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34800957

RESUMO

We present a comparison of the photoionization dynamics of the 4d shell of XeF2 from threshold to 250 eV to those of the prototypical 4d shell of atomic Xe. The new experimental data include spin-orbit and ligand-field-resolved partial cross sections, photoelectron angular distributions, branching fractions, and lifetime widths for the 4d-hole states. The spin-orbit branching fractions and angular distributions are remarkably similar to the corresponding distributions from atomic Xe across a broad energy interval that includes both the intense shape resonance in the f continuum and a Cooper minimum in the same channel. The angular distributions and branching fractions are also in reasonably good agreement with our first-principles theoretical calculations on XeF2. Data are also presented on the lifetime widths of the substate-resolved 4d-hole states of XeF2. While the trends in the widths are similar to those in the earlier experimental and theoretical work, the linewidths are considerably smaller than in the previous measurements, which may require some reinterpretation of the decay mechanism. Finally, we present new data and an analysis of the Auger electron spectra for ionization above the 4d thresholds and resonant Auger spectra for several pre-edge features.

4.
J Chem Phys ; 155(5): 054304, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34364329

RESUMO

Linearly polarized synchrotron radiation has been used to record polarization dependent valence shell photoelectron spectra of imidazole in the photon energy range 21-100 eV. These have allowed the photoelectron angular distributions, as characterized by the anisotropy parameter ß, and the electronic state intensity branching ratios to be determined. Complementing these experimental data, theoretical photoionization partial cross sections and ß-parameters have been calculated for the outer valence shell orbitals. The assignment of the structure appearing in the experimental photoelectron spectra has been guided by vertical ionization energies and spectral intensities calculated by various theoretical methods that incorporate electron correlation and orbital relaxation. Strong orbital relaxation effects have been found for the 15a', nitrogen lone-pair orbital. The calculations also predict that configuration mixing leads to the formation of several low-lying satellite states. The vibrational structure associated with ionization out of a particular orbital has been simulated within the Franck-Condon model using harmonic vibrational modes. The adiabatic approximation appears to be valid for the X 2A″ state, with the ß-parameter for this state being independent of the level of vibrational excitation. However, for all the other outer valence ionic states, a disparity occurs between the observed and the simulated vibrational structure, and the measured ß-parameters are at variance with the behavior expected at the level of the Franck-Condon approximation. These inconsistencies suggest that the excited electronic states may be interacting vibronically such that the nuclear dynamics occur over coupled potential energy surfaces.

5.
J Phys Chem A ; 124(29): 6050-6060, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32551647

RESUMO

Single-photon, photoelectron-photoion coincidence spectroscopy is used to record the mass-selected ion spectra and slow photoelectron spectra of C4H5 radicals produced by the abstraction of hydrogen atoms from three C4H6 precursors by fluorine atoms generated by a microwave discharge. Three different C4H5 isomers are identified, with the relative abundances depending on the nature of the precursor (1-butyne, 1,2-butadiene, and 1,3-butadiene). The results are compared with our previous work using 2-butyne as a precursor [Hrodmarsson, H. R. J. Phys. Chem. A 2019, 123, 1521-1528]. The slow photoelectron spectra provide new information on the three radical isomers that is in good agreement with previous experimental and theoretical results [Lang, M. J. Phys. Chem. A 2015, 119, 3995-4000; Hansen, N. J. Phys. Chem. A 2006, 110, 3670-3678]. The energy scans of the C4H5 photoionization signal are recorded with substantially better resolution and signal-to-noise ratio than those in earlier work, allowing the observation of autoionizing resonances based on excited states of the C4H5 cation. Photoelectron images recorded at several energies are also reported, providing insight into the decay processes of these excited states. Finally, in contrast to the earlier work using 2-butyne as a precursor, where H-atom abstraction was the only observed process, F- and H-atom additions to the present precursors are also observed through the detection of C4H6F, C4H5F, and C4H7.

6.
J Chem Phys ; 150(22): 224303, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31202236

RESUMO

The C 1s ionization spectrum of CH3I has been studied both experimentally and theoretically. Synchrotron radiation has been employed to record polarization dependent photoelectron spectra at a photon energy of 614 eV. These spectra encompass the main-line due to the C 1s single-hole state and the peaks associated with the shake-up satellites. Vertical ionization energies and relative photoelectron intensities have been computed using the fourth-order algebraic-diagrammatic construction approximation scheme for the one-particle Green's function and the 6-311++G** basis set. The theoretical spectrum derived from these calculations agrees qualitatively with the experimental results, thereby allowing the principal spectral features to be assigned. According to our calculations, two 2A1 shake-up states of the C 1s-1 σCI → σCI * type with singlet and triplet intermediate coupling of the electron spins (S' = 0, 1) play an important role in the spectrum and contribute significantly to the overall intensity. Both of these states are expected to have dissociative diabatic potential energy surfaces with respect to the C-I separation. Whereas the upper of these states perturbs the manifold of Rydberg states, the lower state forms a band which is characterized by a strongly increased width. Our results indicate that the lowest shake-up peak with significant spectral intensity is due to the pair (S' = 0, 1) of 2E (C 1s-1 I 5p → σCI *) states. We predict that these 2E states acquire photoelectron intensity due to spin-orbit interaction. Such interactions play an important role here due to the involvement of the I 5p orbitals.

7.
J Phys Chem A ; 123(8): 1521-1528, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30694670

RESUMO

We present new high-resolution data on the photoionization of the 2-butyn-1-yl radical (CH3C≡C-•CH2) formed by H atom abstraction from 2-butyne by F atoms. The spectra were recorded from 7.7 to 11 eV by using double-imaging, photoelectron-photoion coincidence spectroscopy, which allows the unambiguous correlation of photoelectron data and the mass of the species. The photoionization spectrum shows significant resonant autoionizing structure converging to excited states of the C4H5+ cation, similar to what is observed in the closely related propargyl radical (HC≡C-•CH2). The threshold photoelectron spectrum, obtained with a resolution of 17 meV, is also reported. This spectrum is consistent with previous measurements of the first photoionization band but has been extended to higher energy to allow the observation of bands corresponding to excited electronic states of the ion. A refined value of the adiabatic ionization energy is extracted: IE(C4H5) = 7.93 ± 0.01 eV. A determination of the absolute photoionization cross section of the 2-butyn-1-yl radical at 9.7 eV is also reported: σion(C4H5) = 6.1 ± 1.8 Mb.

8.
J Chem Phys ; 149(7): 074305, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134690

RESUMO

The influence of vibronic coupling on the outer valence ionic states of cis-dichloroethene has been investigated by recording photoelectron spectra over the excitation range 19-90 eV using plane polarized synchrotron radiation, for two polarization orientations. The photoelectron anisotropy parameters and electronic state branching ratios derived from these spectra have been compared to theoretical predictions obtained with the continuum multiple scattering approach. This comparison shows that the photoionization dynamics of the Ã2B2, B̃2A1, C̃2A2, and D̃2B1 states, all of which are formed through the ejection of an electron from a nominally chlorine lone-pair orbital, exhibit distinct evidence of the Cooper minimum associated with the halogen atom. While retaining a high degree of atomic character, these orbital ionizations nevertheless display clear distinctions. Simulations, assuming the validity of the Born-Oppenheimer and the Franck-Condon approximations, of the X̃2B1, Ã2B2, and D̃2B1 state photoelectron bands have allowed some of the vibrational structure observed in the experimental spectra to be assigned. The simulations provide a very satisfactory interpretation for the X̃2B1 state band but appear less successful for the Ã2B2 and D̃2B1 states, with irregularities appearing in both. The B̃2A1 and C̃2A2 state photoelectron bands exhibit very diffuse and erratic profiles that cannot be reproduced at this level. Photoelectron anisotropy parameters, ß, have been evaluated as a function of binding energy across the studied photon energy range. There is a clear step change in the ß values of the Ã2B2 band at the onset of the perturbed peak intensities, with ß evidently adopting the value of the B̃2A1 band ß. The D̃2B1 band ß values also display an unexpected vibrational level dependence, contradicting Franck-Condon expectations. These various behaviors are inferred to be a consequence of vibronic coupling in this system.


Assuntos
Dicloroetilenos/química , Dicloroetilenos/efeitos da radiação , Simulação por Computador , Elétrons , Modelos Químicos , Modelos Moleculares , Espectroscopia Fotoeletrônica , Fótons , Estereoisomerismo , Vibração
9.
J Chem Phys ; 149(7): 074306, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134699

RESUMO

The valence shell photoelectron spectrum of cis-dichloroethene has been studied both experimentally and theoretically. Photoelectron spectra have been recorded with horizontally and vertically plane polarized synchrotron radiation, thereby allowing the anisotropy parameters, characterizing the angular distributions, to be determined. The third-order algebraic-diagrammatic construction approximation scheme for the one-particle Green's function has been employed to compute the complete valence shell ionization spectrum. In addition, the vertical ionization energies have been calculated using the outer valence Green's function (OVGF) method and the equation-of-motion coupled-cluster, with single and double substitutions for calculating ionization potentials (EOM-IP-CCSD) model. The theoretical results have enabled assignments to be proposed for most of the structure observed in the experimental spectra, including the inner-valence regions dominated by satellite states. The linear vibronic coupling model has been employed to study the vibrational structure of the lowest photoelectron bands, using parameters obtained from ab initio calculations. The ground state optimized geometries and vibrational frequencies have been computed at the level of the second-order Møller-Plesset perturbation theory, and the dependence of the ionization energies on the nuclear configuration has been evaluated using the OVGF method. While the adiabatic approximation holds for the X̃2B1 state photoelectron band, the Ã2B2, B̃2A1, and C̃2A2 states interact vibronically and form a complex photoelectron band system with four distinct maxima. The D̃2B1 and Ẽ2B2 states also interact vibronically with each other. The potential energy surface of the D̃2B1 state is predicted to have a double-minimum shape with respect to the out-of-plane a2 deformations of the molecular structure. The single photoelectron band resulting from this interaction is characterized by a highly irregular structure, reflecting the non-adiabatic nuclear dynamics occurring on the two coupled potential energy surfaces forming a conical intersection close to the minimum of the Ẽ2B2 state.


Assuntos
Dicloroetilenos/química , Dicloroetilenos/efeitos da radiação , Simulação por Computador , Elétrons , Modelos Químicos , Modelos Moleculares , Espectroscopia Fotoeletrônica , Fótons , Distribuição de Poisson , Estereoisomerismo , Vibração
10.
J Chem Phys ; 147(22): 224303, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29246058

RESUMO

The single-photon, photoelectron-photoion coincidence spectrum of N2 has been recorded at high (∼1.5 cm-1) resolution in the region between the N2+ X Σg2+, v+ = 0 and 1 ionization thresholds by using a double-imaging spectrometer and intense vacuum-ultraviolet light from the Synchrotron SOLEIL. This approach provides the relative photoionization cross section, the photoelectron energy distribution, and the photoelectron angular distribution as a function of photon energy. The region of interest contains autoionizing valence states, vibrationally autoionizing Rydberg states converging to vibrationally excited levels of the N2+ X Σg2+ ground state, and electronically autoionizing states converging to the N2+A2Π and B 2Σu+ states. The wavelength resolution is sufficient to resolve rotational structure in the autoionizing states, but the electron energy resolution is insufficient to resolve rotational structure in the photoion spectrum. A simplified approach based on multichannel quantum defect theory is used to predict the photoelectron angular distribution parameters, ß, and the results are in reasonably good agreement with experiment.

11.
J Chem Phys ; 147(16): 164307, 2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-29096444

RESUMO

The valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine have been studied both experimentally and theoretically. Synchrotron radiation has been employed to record angle resolved photoelectron spectra in the photon energy range 20-100 eV, and these have enabled anisotropy parameters and branching ratios to be derived. The experimental results have been compared with theoretical predictions obtained using the continuum multiple scattering Xα approach. This comparison shows that the anisotropy parameter associated with the nominally chlorine lone-pair orbital lying in the molecular plane is strongly affected by the atomic Cooper minimum. In contrast, the photoionization dynamics of the second lone-pair orbital, orientated perpendicular to the molecular plane, seem relatively unaffected by this atomic phenomenon. The outer valence ionization has been studied theoretically using the third-order algebraic-diagrammatic construction (ADC(3)) approximation scheme for the one-particle Green's function, the outer valence Green's function method, and the equation-of-motion (EOM) coupled cluster (CC) theory at the level of the EOM-IP-CCSD and EOM-EE-CC3 models. The convergence of the results to the complete basis set limit has been investigated. The ADC(3) method has been employed to compute the complete valence shell ionization spectra of 2-chloropyridine and 3-chloropyridine. The relaxation mechanism for ionization of the nitrogen σ-type lone-pair orbital (σN LP) has been found to be different to that for the corresponding chlorine lone-pair (σCl LP). For the σN LP orbital, π-π* excitations play the main role in the screening of the lone-pair hole. In contrast, excitations localized at the chlorine site involving the chlorine πCl LP lone-pair and the Cl 4p Rydberg orbital are the most important for the σCl LP orbital. The calculated photoelectron spectra have allowed assignments to be proposed for most of the structure observed in the experimental spectra. The theoretical work also highlights the formation of satellite states, due to the breakdown of the single particle model of ionization, in the inner valence region.

12.
J Chem Phys ; 146(24): 244307, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28668050

RESUMO

The valence shell ionization spectrum of pyridine was studied using the third-order algebraic-diagrammatic construction approximation scheme for the one-particle Green's function and the outer-valence Green's function method. The results were used to interpret angle resolved photoelectron spectra recorded with synchrotron radiation in the photon energy range of 17-120 eV. The lowest four states of the pyridine radical cation, namely, 2A2(1a2-1), 2A1(7a1-1), 2B1(2b1-1), and 2B2(5b2-1), were studied in detail using various high-level electronic structure calculation methods. The vertical ionization energies were established using the equation-of-motion coupled-cluster approach with single, double, and triple excitations (EOM-IP-CCSDT) and the complete basis set extrapolation technique. Further interpretation of the electronic structure results was accomplished using Dyson orbitals, electron density difference plots, and a second-order perturbation theory treatment for the relaxation energy. Strong orbital relaxation and electron correlation effects were shown to accompany ionization of the 7a1 orbital, which formally represents the nonbonding σ-type nitrogen lone-pair (nσ) orbital. The theoretical work establishes the important roles of the π-system (π-π* excitations) in the screening of the nσ-hole and of the relaxation of the molecular orbitals in the formation of the 7a1(nσ)-1 state. Equilibrium geometric parameters were computed using the MP2 (second-order Møller-Plesset perturbation theory) and CCSD methods, and the harmonic vibrational frequencies were obtained at the MP2 level of theory for the lowest three cation states. The results were used to estimate the adiabatic 0-0 ionization energies, which were then compared to the available experimental and theoretical data. Photoelectron anisotropy parameters and photoionization partial cross sections, derived from the experimental spectra, were compared to predictions obtained with the continuum multiple scattering approach.

13.
J Chem Phys ; 143(14): 144103, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26472359

RESUMO

The valence-shell ionization spectrum of bromobenzene, as a representative halogen substituted aromatic, was studied using the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator. This method, also referred to as IP-ADC(3), was implemented as a part of the Q-Chem program and enables large-scale calculations of the ionization spectra, where the computational effort scales as n(5) with respect to the number of molecular orbitals n. The IP-ADC(3) scheme is ideally suited for investigating low-lying ionization transitions, so fresh insight could be gained into the cationic state manifold of bromobenzene. In particular, the present IP-ADC(3) calculations with the cc-pVTZ basis reveal a whole class of low-lying low-intensity two-hole-one-particle (2h-1p) doublet and quartet states, which are relevant to various photoionization processes. The good qualitative agreement between the theoretical spectral profile for the valence-shell ionization transitions generated with the smaller cc-pVDZ basis set and the experimental photoelectron spectrum measured at a photon energy of 80 eV on the PLÉIADES beamline at the Soleil synchrotron radiation source allowed all the main features to be assigned. Some theoretical aspects of the ionization energy calculations concerning the use of various approximation schemes and basis sets are discussed.

14.
J Chem Phys ; 143(14): 144304, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26472376

RESUMO

Angle resolved photoelectron spectra of the X̃(2)B1, Ã(2)A2, B̃(2)B2, and C̃(2)B1 states of bromobenzene have been recorded over the excitation range 20.5-94 eV using linearly polarized synchrotron radiation. The photoelectron anisotropy parameters and electronic branching ratios derived from these spectra have been compared to theoretical predictions obtained with the continuum multiple scattering approach. This comparison shows that ionization from the 8b2 orbital and, to a lesser extent, the 4b1 orbital is influenced by the Cooper minimum associated with the bromine atom. The 8b2 and 4b1 orbitals are nominally bromine lone-pairs, but the latter orbital interacts strongly with the π-orbitals in the benzene ring and this leads to a reduced atomic character. Simulations of the X̃(2)B1, B̃(2)B2, and C̃(2)B1 state photoelectron bands have enabled most of the vibrational structures appearing in the experimental spectra to be assigned. Many of the photoelectron peaks exhibit an asymmetric shape with a tail towards low binding energy. This asymmetry has been examined in the simulations of the vibrationally unexcited peak, due mainly to the adiabatic transition, in the X̃(2)B1 state photoelectron band. The simulations show that the asymmetric profile arises from hot-band transitions. The inclusion of transitions originating from thermally populated levels results in a satisfactory agreement between the experimental and simulated peak shapes.

15.
J Phys Chem A ; 119(50): 12339-48, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26469080

RESUMO

The room-temperature photoabsorption spectra of a number of linear alkynes with internal triple bonds (e.g., 2-butyne, 2-pentyne, and 2- and 3-hexyne) show similar resonances just above the lowest ionization threshold of the neutral molecules. These features result in a substantial enhancement of the photoabsorption cross sections relative to the cross sections of alkynes with terminal triple bonds (e.g., propyne, 1-butyne, 1-pentyne, ...). Based on earlier work on 2-butyne [ Xu et al., J. Chem. Phys. 2012, 136, 154303 ], these features are assigned to excitation from the neutral highest occupied molecular orbital (HOMO) to a shape resonance with g (l = 4) character and approximate π symmetry. This generic behavior results from the similarity of the HOMOs in all internal alkynes, as well as the similarity of the corresponding gπ virtual orbital in the continuum. Theoretical calculations of the absorption spectrum above the ionization threshold for the 2- and 3-alkynes show the presence of a shape resonance when the coupling between the two degenerate or nearly degenerate π channels is included, with a dominant contribution from l = 4. These calculations thus confirm the qualitative arguments for the importance of the l = 4 continuum near threshold for internal alkynes, which should also apply to other linear internal alkynes and alkynyl radicals. The 1-alkynes do not have such high partial waves present in the shape resonance. The lower l partial waves in these systems are consistent with the broader features observed in the corresponding spectra.

16.
J Chem Phys ; 143(3): 034304, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26203024

RESUMO

The absolute photoabsorption cross sections of 1- and 2-butyne have been recorded at high resolution by using the vacuum-ultraviolet Fourier-Transform spectrometer at the SOLEIL Synchrotron. Both spectra show more resolved structure than previously observed, especially in the case of 2-butyne. In this work, we assess the potential importance of Rydberg states with higher values of orbital angular momentum, l, than are typically observed in photoabsorption experiments from ground state molecules. We show how the character of the highest occupied molecular orbitals in 1- and 2-butyne suggests the potential importance of transitions to such high-l (l = 3 and 4) Rydberg states. Furthermore, we use theoretical calculations of the partial wave composition of the absorption cross section just above the ionization threshold and the principle of continuity of oscillator strength through an ionization threshold to support this conclusion. The new absolute photoabsorption cross sections are discussed in light of these arguments, and the results are consistent with the expectations. This type of argument should be valuable for assessing the potential importance of different Rydberg series when sufficiently accurate direct quantum chemical calculations are difficult, for example, in the n ≥ 5 manifolds of excited states of larger molecules.

17.
J Chem Phys ; 141(11): 114303, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25240354

RESUMO

The absolute photoabsorption cross section of propyne was recorded between 62,000 and 88,000 cm(-1) by using the vacuum-ultraviolet, Fourier-transform spectrometer at the Synchrotron Soleil. This cross section spans the region including the lowest Rydberg bands and extends above the Franck-Condon envelope for ionization to the ground electronic state of the propyne cation, X̃(+). Room-temperature spectra were recorded in a flowing cell at 0.9 cm(-1) resolution, and jet-cooled spectra were recorded at 1.8 cm(-1) resolution and a rotational temperature of ~100 K. The reduced widths of the rotational band envelopes in the latter spectra reveal new structure and simplify a number of assignments. Although nf Rydberg series have not been assigned previously in the photoabsorption spectrum of propyne, arguments are presented for their potential importance, and the assignment of one nf series is proposed. As expected from previous photoelectron spectra, Rydberg series are also observed above the adiabatic ionization threshold that converge to the v3(+) = 1 and 2 levels of the C≡C stretching vibration.

18.
Phys Chem Chem Phys ; 16(39): 21629-44, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25196806

RESUMO

The recently introduced synchrotron radiation-based Fourier transform spectroscopy has been employed to study the excited electronic states of thiophene. A highly resolved photoabsorption spectrum has been measured between ∼5 and 12.5 eV, providing a wealth of new data. High-level ab initio computations have been performed using the second-order algebraic-diagrammatic construction (ADC(2)) polarization propagator approach, and the equation-of-motion coupled-cluster (EOM-CC) method at the CCSD and CC3 levels, to guide the assignment of the spectrum. The adiabatic energy corrections have been evaluated, thereby extending the theoretical study beyond the vertical excitation picture and leading to a significantly improved understanding of the spectrum. The low-lying π→π* and π→σ* transitions result in prominent broad absorption bands. Two strong Rydberg series converging onto the X(~)(2)A2 state limit have been assigned to the 1a2→npb1(1)B2 and the 1a2→nda2(1)A1 transitions. A second, and much weaker, d-type series has been assigned to the 1a2→ndb1(1)B2 transitions. Excitation into some of the Rydberg states belonging to the two strong series gives rise to vibrational structure, most of which has been interpreted in terms of excitations of the totally symmetric ν4 and ν8 modes. One Rydberg series, assigned to the 3b1→nsa1(1)B1 transitions, has been identified converging onto the Ã(2)B1 state limit, and at higher energies Rydberg states converging onto the B(~)(2)A1 state limit could be identified. The present spectra reveal highly irregular vibrational structure in certain low energy absorption bands, and thus provide a new source of information for the rapidly developing studies of excited state non-adiabatic dynamics and photochemistry.

19.
Science ; 341(6151): 1236-9, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-24031016

RESUMO

Ice shelves play a key role in the mass balance of the Antarctic ice sheets by buttressing their seaward-flowing outlet glaciers; however, they are exposed to the underlying ocean and may weaken if ocean thermal forcing increases. An expedition to the ice shelf of the remote Pine Island Glacier, a major outlet of the West Antarctic Ice Sheet that has rapidly thinned and accelerated in recent decades, has been completed. Observations from geophysical surveys and long-term oceanographic instruments deployed down bore holes into the ocean cavity reveal a buoyancy-driven boundary layer within a basal channel that melts the channel apex by 0.06 meter per day, with near-zero melt rates along the flanks of the channel. A complex pattern of such channels is visible throughout the Pine Island Glacier shelf.


Assuntos
Camada de Gelo , Oceanos e Mares , Regiões Antárticas , Congelamento
20.
Science ; 292(5522): 1697-700, 2001 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-11387470

RESUMO

Satellite observations have shown the occasional occurrence of a large opening in the sea-ice cover of the Weddell Sea, Antarctica, a phenomenon known as the Weddell Polynya. The transient appearance, position, size, and shape of the polynya is explained here by a mechanism by which modest variations in the large-scale oceanic flow past the Maud Rise seamount cause a horizontal cyclonic eddy to be shed from its northeast flank. The shed eddy transmits a divergent Ekman stress into the sea ice, leading to a crescent-shaped opening in the pack. Atmospheric thermodynamical interaction further enhances the opening by inducing oceanic convection. A sea-ice-ocean computer model simulation vividly demonstrates how this mechanism fully accounts for the characteristics that mark Weddell Polynya events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA