Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(3): 787-799, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37847408

RESUMO

Lipid oxidation in food products is a crucial problem that causes undesirable changes in the food's flavor, texture, and nutritional value. It should be carefully monitored as it can lead to the formation of potentially toxic compounds and in that way reduce the shelf life of the product. Liquid chromatography coupled to mass spectrometry is a powerful tool to monitor the formation of oxidized lipids. However, the presence of lipid species in both their non-oxidized and oxidized forms at distinctly different concentrations can hinder the detection and identification of the less abundant oxidized species, due to coelution. In this study, a flow injection mass spectrometry approach was used to selectively ionize oxidized triacylglycerols versus their non-oxidized precursors. Three mobile phase additives were investigated (ammonium formate, sodium acetate, and sodium iodide) at three different concentrations, and ion source settings (i.e., sheath gas temperature, capillary voltage, and nozzle voltage) were optimized. A fractional factorial design was conducted to examine not only the direct effect of the operating parameters on the selectivity of ionization for the oxidized lipid species, but also to assess their combined effect. Overall, selective ionization of oxidized versus non-oxidized lipid species was favored by the use of sodium-containing solvent additives. The application of specific ion source settings resulted in an increased ionization selectivity, with sheath gas temperature and capillary voltage having the most significant influence. A selectivity factor as high as 120 could be reached by combining 0.1 mg/mL sodium-containing additives, with 250 °C sheath gas temperature and 5000 V capillary voltage. These findings will contribute to future studies on fast detection and relative quantification of low abundant oxidized triacylglycerols and their possible impact on human health.


Assuntos
Lipídeos , Sódio , Humanos , Solventes , Espectrometria de Massas , Triglicerídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos
2.
Anal Bioanal Chem ; 415(14): 2715-2726, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37000211

RESUMO

Peptides are an important group of compounds contributing to the desired, as well as the undesired taste of a food product. Their taste impressions can include aspects of sweetness, bitterness, savoury, umami and many other impressions depending on the amino acids present as well as their sequence. Identification of short peptides in foods is challenging. We developed a method to assign identities to short peptides including homologous structures, i.e. peptides containing the same amino acids with a different sequence order, by accurate prediction of the retention times during reversed phase separation. To train the method, a large set of well-defined short peptides with systematic variations in the amino acid sequence was prepared by a novel synthesis strategy called 'swapped-sequence synthesis'. Additionally, several proteins were enzymatically digested to yield short peptides. Experimental retention times were determined after reversed phase separation and peptide MS2 data was acquired using a high-resolution mass spectrometer operated in data-dependent acquisition mode (DDA). A support vector regression model was trained using a combination of existing sequence-independent peptide descriptors and a newly derived set of selected amino acid index derived sequence-specific peptide (ASP) descriptors. The model was trained and validated using the experimental retention times of the 713 small food-relevant peptides prepared. Whilst selecting the most useful ASP descriptors for our model, special attention was given to predict the retention time differences between homologous peptide structures. Inclusion of ASP descriptors greatly improved the ability to accurately predict retention times, including retention time differences between 157 homologous peptide pairs. The final prediction model had a goodness-of-fit (Q2) of 0.94; moreover for 93% of the short peptides, the elution order was correctly predicted.


Assuntos
Peptídeos , Espectrometria de Massas em Tandem , Cromatografia Líquida , Peptídeos/química , Sequência de Aminoácidos , Aminoácidos/química , Cromatografia Líquida de Alta Pressão
3.
Xenobiotica ; 49(8): 945-952, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30085847

RESUMO

Flavonoids are a large class of dietary molecules, among which quercetin is the most ubiquitous, which undergo an extensive intestinal phase-II metabolism. We compared the in vivo metabolism of quercetin in healthy volunteers with two in vitro models, HT29 cells and 3 D human intestinal tissues. Supernatants of the in vitro experiments and the human intestinal fluids (HIF) were analyzed by LC-IMS-MS and LC-HRMS in a qualitative way. Quercetin glucuronides, sulfates and their methyl conjugates were detected in all three systems. The metabolic profiles were found to be different, both in terms of the metabolites produced and their relative proportions. In particular, quercetin sulfates were almost absent in supernatants from HT29 cells incubations while they were a major metabolite in HIF and also found in 3 D intestinal tissues incubations. IMS provided structural information as well as a third dimension of characterization, while HRMS brought increased sensitivity and MS/MS confirmation. HT29 cells are a useful tool to generate phase-II metabolites but do not represent the in vivo situation. 3 D intestinal tissues appear as a more relevant tool to study the intestinal phase-II metabolism of flavonoids.


Assuntos
Voluntários Saudáveis , Intestinos/fisiologia , Espectrometria de Mobilidade Iônica/métodos , Desintoxicação Metabólica Fase II , Quercetina/metabolismo , Cromatografia Líquida , Feminino , Glucuronídeos/metabolismo , Células HT29 , Humanos , Masculino , Metaboloma , Quercetina/química
4.
Anal Bioanal Chem ; 410(22): 5421-5429, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29744561

RESUMO

Lipid oxidation reactions in foods rich in healthy unsaturated fatty acids result in the formation of a wide range of oxidation products that can have adverse effects on food quality and safety. To improve the understanding of oxidation reactions and methods for their inhibition, detailed information on the type and levels of the oxidation products formed is required. Accurate measurement of lipid oxidation products, especially of the non-volatile aldehyde products, has so far been a challenge due to the low sensitivity and limited specificity of most analytical methods. Here, a novel normal-phase LC method that uses selective labeling of aldehydes and epoxides with 7-(diethylamino)coumarin-3-carbohydrazide (CHH) is described. Labeling of alkanals is quantitative within 10 h. For alkenals, conversion is only around 50% at 24 h reaction time. Detailed MS identification of all aldehydes and epoxides is possible by using high-resolution MS and data-dependent MS2 acquisition. Fluorescence detection was successfully used to quantify groups of oxidation products. Sensitivity was high enough to allow accurate quantification even in fresh mayonnaises, where levels of around only 0.3 g total aldehydes/kg oil were found. Individual species can be quantified by MS if suitable reference standards are available. If no standards can be used, semi-quantification using an average response factor is an option. Clearly, the novel derivatization method is suitable for monitoring secondary lipid oxidation products in the early stages of shelf life. This makes it an important tool for developing improved food products. Graphical abstract Selective labeling of low and high molecular weight lipid oxidation products with 7-(diethylamino) coumarin-3-carbohydrazide for identification and semi-quantification.


Assuntos
Aldeídos/análise , Cumarínicos/química , Análise de Alimentos/métodos , Hidrazinas/química , Lipídeos/química , Aldeídos/química , Aldeídos/normas , Cromatografia Líquida/métodos , Inocuidade dos Alimentos , Oxirredução , Padrões de Referência , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização por Electrospray
5.
Anal Bioanal Chem ; 410(2): 471-482, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29167932

RESUMO

Flavonoids are a class of natural compounds with a broad range of potentially beneficial health properties. They are subjected to an extensive intestinal phase-II metabolism, i.e., conjugation to glucuronic acid, sulfate, and methyl groups. Flavonoids and their metabolites can interact with drug transporters and thus interfere with drug absorption, causing food-drug interactions. The site of metabolism plays a key role in the activity, but the identification of the various metabolites remains a challenge. Here, we developed an analytical method to identify the phase-II metabolites of structurally similar flavonoids. We used liquid chromatography-ion-mobility spectrometry-mass spectrometry (LC-IMS-MS) analysis to identify phase-II metabolites of flavonols, flavones, and catechins produced by HT29 cells. We showed that IMS could bring valuable structural information on the different positional isomers of the flavonols and flavones. The position of the glucuronide moiety had a strong influence on the collision cross section (CCS) of the metabolites, with only minor contribution of hydroxyl and methyl moieties. For the catechins, fragmentation data obtained from MS/MS analysis appeared more useful than IMS to determine the structure of the metabolites, mostly due to the high number of metabolites formed. Nevertheless, CCS information as a molecular fingerprint proved to be useful to identify peaks from complex mixtures. LC-IMS-MS thus appears as a valuable tool for the identification of phase-II metabolites of flavonoids. Graphical abstract Structural identification of phase-II metabolites of flavonoids using LC-IMS-MS.


Assuntos
Flavonoides/metabolismo , Glucuronídeos/metabolismo , Cromatografia Líquida/métodos , Flavonoides/análise , Glucuronídeos/análise , Células HT29 , Humanos , Isomerismo , Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodos
6.
Nutrients ; 8(12)2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27983686

RESUMO

Polyphenols, a complex group of secondary plant metabolites, including flavonoids and phenolic acids, have been studied in depth for their health-related benefits. The activity of polyphenols may, however, be hampered when consumed together with protein-rich food products, due to the interaction between polyphenols and proteins. To that end we have tested the bioavailability of representatives of a range of polyphenol classes when consumed for five days in different beverage matrices. In a placebo-controlled, randomized, cross-over study, 35 healthy males received either six placebo gelatine capsules consumed with 200 mL of water, six capsules with 800 mg polyphenols derived from red wine and grape extracts, or the same dose of polyphenols incorporated into 200 mL of either pasteurized dairy drink, soy drink (both containing 3.4% proteins) or fruit-flavoured protein-free drink . At the end of the intervention urine and blood was collected and analysed for a broad range of phenolic compounds using Gas Chromatography-Mass Spectrometry (GC-MS), Liquid Chromatography-Multiple Reaction Monitoring-Mass Spectrometry (LC-MRM-MS), and Nuclear Magnetic Resonance (NMR) spectroscopy techniques. The plasma and urine concentrations of the polyphenols identified increased with all formats, including the protein-rich beverages. Compared to capsule ingestion, consumption of polyphenol-rich beverages containing either dairy, soy or no proteins had minor to no effect on the bioavailability and excretion of phenolic compounds in plasma (118% ± 9%) and urine (98% ± 2%). We conclude that intake of polyphenols incorporated in protein-rich drinks does not have a major impact on the bioavailability of a range of different polyphenols and phenolic metabolites.


Assuntos
Bebidas , Fenóis/farmacocinética , Proteínas de Soja/farmacocinética , Adolescente , Adulto , Idoso , Disponibilidade Biológica , Cromatografia/métodos , Estudos Cross-Over , Interações Medicamentosas , Voluntários Saudáveis , Humanos , Hidroxibenzoatos , Masculino , Pessoa de Meia-Idade , Fenóis/sangue , Fenóis/urina , Vitis/química , Vinho/análise , Adulto Jovem
7.
Anal Bioanal Chem ; 404(8): 2349-61, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22932811

RESUMO

NMR-based metabolite profiling of urine is a fast and reproducible method for detection of numerous metabolites with diverse chemical properties. However, signal overlap in the (1)H NMR profiles of human urine may hamper quantification and identification of metabolites. Therefore, a new method has been developed using automated solid-phase extraction (SPE) combined with NMR metabolite profiling. SPE-NMR of urine resulted in three fractions with complementary and reproducible sub-profiles. The sub-profile from the wash fraction (100 % water) contained polar metabolites; that from the first eluted fraction (10 % methanol-90 % water) semi-polar metabolites; and that from the second eluted fraction (100 % methanol) aromatic metabolites. The method was validated by analysis of urine samples collected from a crossover human nutritional intervention trial in which healthy volunteers consumed capsules containing a polyphenol-rich mixture of red wine and grape juice extract (WGM), the same polyphenol mixture dissolved in a soy drink (WGM_Soy), or a placebo (PLA), over a period of five days. Consumption of WGM clearly increased urinary excretion of 4-hydroxyhippuric acid, hippuric acid, 3-hydroxyphenylacetic acid, homovanillic acid, and 3-(3-hydroxyphenyl)-3-hydroxypropionic acid. However, there was no difference between the excreted amounts of these metabolites after consumption of WGM or WGM_Soy, indicating that the soy drink is a suitable carrier for WGM polyphenols. Interestingly, WGM_Soy induced a significant increase in excretion of cis-aconitate compared with WGM and PLA, suggesting a higher demand on the tricarboxylic acid cycle. In conclusion, SPE-NMR metabolite sub-profiling is a reliable and improved method for quantification and identification of metabolites in urine to discover dietary effects and markers of phytochemical exposure.


Assuntos
Espectroscopia de Ressonância Magnética/normas , Extração em Fase Sólida/normas , Urinálise/métodos , Urina/química , Glicina/análogos & derivados , Glicina/metabolismo , Glicina/urina , Hipuratos/metabolismo , Hipuratos/urina , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
8.
J Agric Food Chem ; 60(12): 3078-85, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22372405

RESUMO

Red wine and grape polyphenols are considered to promote cardiovascular health and are involved in multiple biological functions. Their overall impact on the human metabolome is not known. Therefore, exogenous and endogenous metabolic effects were determined in fasting plasma and 24 h urine from healthy male adults consuming a mix of red wine and grape juice extracts (WGM) for 4 days in a placebo-controlled, crossover study. Syringic acid, 3-hydroxyhippuric acid, pyrogallol, 3-hydroxyphenylacetic acid, and 3-hydroxyphenylpropionic acid were confirmed as the strongest urinary markers of WGM intake. Overall, WGM had a mild impact on the endogenous metabolism. Most noticeable were changes in several amino acids deriving from tyrosine and tryptophan. Reductions in the microbial metabolites p-cresol sulfate and 3-indoxylsulfuric acid and increases in indole-3-lactic acid and nicotinic acid were observed in urine. In plasma, tyrosine was reduced. The results suggest that short-term intake of WGM altered microbial protein fermentation and/or amino acid metabolism.


Assuntos
Frutas/química , Metaboloma/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Polifenóis/administração & dosagem , Vitis/química , Vinho , Adolescente , Adulto , Idoso , Estudos Cross-Over , Ácido Gálico/análogos & derivados , Ácido Gálico/urina , Hipuratos/urina , Humanos , Masculino , Pessoa de Meia-Idade , Fenóis , Fenilacetatos/urina , Placebos , Propionatos/urina , Pirogalol/urina , Tirosina/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA