Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Med Econ ; 27(1): 708-714, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38581156

RESUMO

OBJECTIVE: To determine the economic impact of a minimally invasive temperature-controlled radiofrequency (TCRF) device for treating nasal airway obstruction (NAO). METHODS: A budget impact model was developed for two scenarios: a reference scenario of functional rhinoplasty surgery with concomitant septoplasty and inferior turbinate reduction (ITR) performed in the hospital outpatient department where TCRF is not an available treatment option and a new scenario consisting of in-office TCRF treatment of the nasal valve and ITR. A payor perspective was adopted with a hypothetical population plan size of one million members. Costs were estimated over a time horizon of 4 years. The eligible population included patients with severe/extreme NAO and nasal valve collapse (NVC) as the primary cause or significant contributor. Data inputs were sourced from targeted literature reviews. Uncertainty within the model structure and input parameters was assessed using one-way sensitivity analysis. RESULTS: The introduction of a TCRF device resulted in population-level cost savings of $20,015,123 and per-responder average cost savings of $3531 through a 4-year time horizon due to lower procedure costs and complication rates of the device relative to the surgical comparator. Results were robust when varying parameter values in sensitivity analyses, with cost savings being most sensitive to the prevalence of NAO and estimated response rates to functional rhinoplasty and TCRF. CONCLUSIONS: In patients with severe/extreme NAO, with NVC as the primary or major contributor, introducing TCRF with ITR as a treatment option demonstrates the potential for significant cost savings over functional rhinoplasty with septoplasty and ITR.


Nasal valve dysfunction is a common cause of nasal airway obstruction (NAO) that has a significant impact on heath and quality of life for affected individuals. Previously, patients were offered temporary measures or a type of surgery called functional rhinoplasty which is a highly complex surgery that can be costly, requires recovery time, and in rare cases, not be successful. Recently, a new minimally invasive treatment alternative for NAO called temperature-controlled radiofrequency (TCRF) that may be performed in a surgery center or a doctor's office has become available. This paper provides the results of budget impact analysis performed to assess whether adding the TCRF procedure in place of surgery as a choice for patients with NAO will result in cost savings to an insurance payer with 1 million covered individuals in the United States over a period of 4 years. Results show that TCRF may result in an average of 9,416 fewer rhinoplasty surgeries, provide an average 4-year cost-savings of $3,531 for every patient that responds to TCRF treatment, and a savings of $20,015,123 over 4 years for the insurance provider. These potential cost savings over 4 years would likely be due to reduced procedure costs and complication rates compared to surgery.


Assuntos
Obstrução Nasal , Rinoplastia , Humanos , Obstrução Nasal/cirurgia , Obstrução Nasal/economia , Estados Unidos , Rinoplastia/economia , Rinoplastia/métodos , Análise Custo-Benefício , Conchas Nasais/cirurgia , Redução de Custos , Modelos Econométricos , Septo Nasal/cirurgia
2.
Clin Infect Dis ; 78(3): 775-784, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-37815489

RESUMO

BACKGROUND: Pneumonia is a common cause of morbidity and mortality, yet a causative pathogen is identified in a minority of cases. Plasma microbial cell-free DNA sequencing may improve diagnostic yield in immunocompromised patients with pneumonia. METHODS: In this prospective, multicenter, observational study of immunocompromised adults undergoing bronchoscopy to establish a pneumonia etiology, plasma microbial cell-free DNA sequencing was compared to standardized usual care testing. Pneumonia etiology was adjudicated by a blinded independent committee. The primary outcome, additive diagnostic value, was assessed in the Per Protocol population (patients with complete testing results and no major protocol deviations) and defined as the percent of patients with an etiology of pneumonia exclusively identified by plasma microbial cell-free DNA sequencing. Clinical additive diagnostic value was assessed in the Per Protocol subgroup with negative usual care testing. RESULTS: Of 257 patients, 173 met Per Protocol criteria. A pneumonia etiology was identified by usual care in 52/173 (30.1%), plasma microbial cell-free DNA sequencing in 49/173 (28.3%) and the combination of both in 73/173 (42.2%) patients. Plasma microbial cell-free DNA sequencing exclusively identified an etiology of pneumonia in 21/173 patients (additive diagnostic value 12.1%, 95% confidence interval [CI], 7.7% to 18.0%, P < .001). In the Per Protocol subgroup with negative usual care testing, plasma microbial cell-free DNA sequencing identified a pneumonia etiology in 21/121 patients (clinical additive diagnostic value 17.4%, 95% CI, 11.1% to 25.3%). CONCLUSIONS: Non-invasive plasma microbial cell-free DNA sequencing significantly increased diagnostic yield in immunocompromised patients with pneumonia undergoing bronchoscopy and extensive microbiologic and molecular testing. CLINICAL TRIALS REGISTRATION: NCT04047719.


Assuntos
Pneumonia , Adulto , Humanos , Estudos Prospectivos , Pneumonia/etiologia , Análise de Sequência de DNA , Hospedeiro Imunocomprometido
3.
Clin Infect Dis ; 76(3): e1492-e1500, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35684984

RESUMO

BACKGROUND: The diagnosis of infective endocarditis (IE) can be difficult, particularly if blood cultures fail to yield a pathogen. This study evaluates the potential utility of microbial cell-free DNA (mcfDNA) as a tool to identify the microbial etiology of IE. METHODS: Blood samples from patients with suspected IE were serially collected. mcfDNA was extracted from plasma and underwent next-generation sequencing. Reads were aligned against a library containing DNA sequences belonging to >1400 different pathogens. mcfDNA from organisms present above a statistical threshold were reported and quantified in molecules per milliliter (MPM). Additional mcfDNA was collected on each subject every 2-3 days for a total of 7 collections or until discharge. RESULTS: Of 30 enrolled patients with suspected IE, 23 had definite IE, 2 had possible IE, and IE was rejected in 5 patients by modified Duke Criteria. Only the 23 patients with definite IE were included for analysis. Both mcfDNA and blood cultures achieved a sensitivity of 87%. The median duration of positivity from antibiotic treatment initiation was estimated to be approximately 38.1 days for mcfDNA versus 3.7 days for blood culture (proportional odds, 2.952; P = .02771), using a semiparametric survival analysis. mcfDNA (log10) levels significantly declined (-0.3 MPM log10 units, 95% credible interval -0.45 to -0.14) after surgical source control was performed (pre- vs postprocedure, posterior probability >0.99). CONCLUSION: mcfDNA accurately identifies the microbial etiology of IE. Sequential mcfDNA levels may ultimately help to individualize therapy by estimating a patient's burden of infection and response to treatment.


Assuntos
Ácidos Nucleicos Livres , Endocardite Bacteriana , Endocardite , Humanos , Hemocultura , Antibacterianos/uso terapêutico , Endocardite Bacteriana/diagnóstico , Endocardite/diagnóstico , Endocardite/tratamento farmacológico
4.
Clin Infect Dis ; 74(11): 2020-2027, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34460909

RESUMO

BACKGROUND: Microbial cell-free DNA (mcfDNA) sequencing of plasma can identify the presence of a pathogen in a host. In this study, we evaluated the duration of pathogen detection by mcfDNA sequencing vs conventional blood culture in patients with bacteremia. METHODS: Blood samples from patients with culture-confirmed bloodstream infection were collected within 24 hours of the index positive blood culture and 48 to 72 hours thereafter. mcfDNA was extracted from plasma, and next-generation sequencing was applied. Reads were aligned against a curated pathogen database. Statistical significance was defined with Bonferroni adjustment for multiple comparisons (P < .0033). RESULTS: A total of 175 patients with Staphylococcus aureus bacteremia (n = 66), gram-negative bacteremia (n = 74), or noninfected controls (n = 35) were enrolled. The overall sensitivity of mcfDNA sequencing compared with index blood culture was 89.3% (125 of 140), and the specificity was 74.3%. Among patients with bacteremia, pathogen-specific mcfDNA remained detectable for significantly longer than conventional blood cultures (median 15 days vs 2 days; P < .0001). Each additional day of mcfDNA detection significantly increased the odds of metastatic infection (odds ratio, 2.89; 95% confidence interval, 1.53-5.46; P = .0011). CONCLUSIONS: Pathogen mcfDNA identified the bacterial etiology of bloodstream infection for a significantly longer interval than conventional cultures, and its duration of detection was associated with increased risk for metastatic infection. mcfDNA could play a role in the diagnosis of partially treated endovascular infections.


Assuntos
Bacteriemia , Ácidos Nucleicos Livres , Sepse , Infecções Estafilocócicas , Bacteriemia/microbiologia , Hemocultura , Humanos , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética
5.
Clin Infect Dis ; 74(9): 1659-1668, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33870413

RESUMO

BACKGROUND: Standard testing fails to identify a pathogen in most patients with febrile neutropenia (FN). We evaluated the ability of the Karius microbial cell-free DNA sequencing test (KT) to identify infectious etiologies of FN and its impact on antimicrobial management. METHODS: This prospective study (ClinicalTrials.gov; NCT02912117) enrolled and analyzed 55 patients with FN. Up to 5 blood samples were collected per subject within 24 hours of fever onset (T1) and every 2 to 3 days. KT results were compared with blood culture (BC) and standard microbiological testing (SMT) results. RESULTS: Positive agreement was defined as KT identification of ≥1 isolate also detected by BC. At T1, positive and negative agreement were 90% (9/10) and 31% (14/45), respectively; 61% of KT detections were polymicrobial. Clinical adjudication by 3 independent infectious diseases specialists categorized Karius results as: unlikely to cause FN (N = 0); definite (N = 12): KT identified ≥1 organism also found by SMT within 7 days; probable (N = 19): KT result was compatible with a clinical diagnosis; possible (N = 10): KT result was consistent with infection but not considered a common cause of FN. Definite, probable, and possible cases were deemed true positives. Following adjudication, KT sensitivity and specificity were 85% (41/48) and 100% (14/14), respectively. Calculated time to diagnosis was generally shorter with KT (87%). Adjudicators determined real-time KT results could have allowed early optimization of antimicrobials in 47% of patients, by addition of antibacterials (20%) (mostly against anaerobes [12.7%]), antivirals (14.5%), and/or antifungals (3.6%); and antimicrobial narrowing in 27.3% of cases. CLINICAL TRIALS REGISTRATION: NCT02912117. CONCLUSION: KT shows promise in the diagnosis and treatment optimization of FN.


Assuntos
Ácidos Nucleicos Livres , Neutropenia Febril , Antibacterianos/uso terapêutico , Neutropenia Febril/diagnóstico , Neutropenia Febril/tratamento farmacológico , Neutropenia Febril/etiologia , Febre/etiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estudos Prospectivos
6.
J Bone Joint Surg Am ; 103(18): 1705-1712, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34293751

RESUMO

BACKGROUND: Over 1 million Americans undergo joint replacement each year, and approximately 1 in 75 will incur a periprosthetic joint infection. Effective treatment necessitates pathogen identification, yet standard-of-care cultures fail to detect organisms in 10% to 20% of cases and require invasive sampling. We hypothesized that cell-free DNA (cfDNA) fragments from microorganisms in a periprosthetic joint infection can be found in the bloodstream and utilized to accurately identify pathogens via next-generation sequencing. METHODS: In this prospective observational study performed at a musculoskeletal specialty hospital in the U.S., we enrolled 53 adults with validated hip or knee periprosthetic joint infections. Participants had peripheral blood drawn immediately prior to surgical treatment. Microbial cfDNA from plasma was sequenced and aligned to a genome database with >1,000 microbial species. Intraoperative tissue and synovial fluid cultures were performed per the standard of care. The primary outcome was accuracy in organism identification with use of blood cfDNA sequencing, as measured by agreement with tissue-culture results. RESULTS: Intraoperative and preoperative joint cultures identified an organism in 46 (87%) of 53 patients. Microbial cfDNA sequencing identified the joint pathogen in 35 cases, including 4 of 7 culture-negative cases (57%). Thus, as an adjunct to cultures, cfDNA sequencing increased pathogen detection from 87% to 94%. The median time to species identification for cases with genus-only culture results was 3 days less than standard-of-care methods. Circulating cfDNA sequencing in 14 cases detected additional microorganisms not grown in cultures. At postoperative encounters, cfDNA sequencing demonstrated no detection or reduced levels of the infectious pathogen. CONCLUSIONS: Microbial cfDNA from pathogens causing local periprosthetic joint infections can be detected in peripheral blood. These circulating biomarkers can be sequenced from noninvasive venipuncture, providing a novel source for joint pathogen identification. Further development as an adjunct to tissue cultures holds promise to increase the number of cases with accurate pathogen identification and improve time-to-speciation. This test may also offer a novel method to monitor infection clearance during the treatment period. LEVEL OF EVIDENCE: Diagnostic Level II. See Instructions for Authors for a complete description of levels of evidence.


Assuntos
Ácidos Nucleicos Livres/genética , Infecções Relacionadas à Prótese/microbiologia , Idoso , Artroplastia de Quadril , Artroplastia do Joelho , Ácidos Nucleicos Livres/sangue , Feminino , Humanos , Masculino , Estudos Prospectivos
7.
Clin Infect Dis ; 73(7): e2355-e2361, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32584965

RESUMO

BACKGROUND: Laboratory confirmation of early Lyme borreliosis (LB) is challenging. Serology is insensitive during the first days to weeks of infection, and blood polymerase chain reaction (PCR) offers similarly poor performance. Here, we demonstrate that detection of Borrelia burgdorferi (B.b.) cell-free DNA (cfDNA) in plasma can improve diagnosis of early LB. METHODS: B.b. detection in plasma samples using unbiased metagenomic cfDNA sequencing performed by a commercial laboratory (Karius Inc) was compared with serology and blood PCR in 40 patients with physician-diagnosed erythema migrans (EM), 28 of whom were confirmed to have LB by skin biopsy culture (n = 18), seroconversion (n = 2), or both (n = 8). B.b. sequence analysis was performed using investigational detection thresholds, different from Karius' clinical test. RESULTS: B.b. cfDNA was detected in 18 of 28 patients (64%) with laboratory-confirmed EM. In comparison, sensitivity of acute-phase serology using modified 2-tiered testing (MTTT) was 50% (P = .45); sensitivity of blood PCR was 7% (P = .0002). Combining B.b. cfDNA detection and MTTT increased diagnostic sensitivity to 86%, significantly higher than either approach alone (P ≤ .04). B.b. cfDNA sequences matched precisely with strain-specific sequence generated from the same individual's cultured B.b. isolate. B.b. cfDNA was not observed at any level in plasma from 684 asymptomatic ambulatory individuals. Among 3000 hospitalized patients tested as part of clinical care, B.b. cfDNA was detected in only 2 individuals, both of whom had clinical presentations consistent with LB. CONCLUSIONS: This is the first report of B.b. cfDNA detection in early LB and a demonstration of potential diagnostic utility. The combination of B.b. cfDNA detection and acute-phase MTTT improves clinical sensitivity for diagnosis of early LB.


Assuntos
Ácidos Nucleicos Livres , Eritema Migrans Crônico , Doença de Lyme , Borrelia burgdorferi/isolamento & purificação , Ácidos Nucleicos Livres/isolamento & purificação , DNA Bacteriano/isolamento & purificação , Eritema Migrans Crônico/diagnóstico , Eritema Migrans Crônico/microbiologia , Humanos , Doença de Lyme/diagnóstico
8.
Clin Infect Dis ; 73(11): e3876-e3883, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-33119063

RESUMO

BACKGROUND: Noninvasive diagnostic options are limited for invasive mold infections (IMIs). We evaluated the performance of a plasma microbial cell-free DNA sequencing (mcfDNA-Seq) test for diagnosing pulmonary IMI after hematopoietic cell transplant (HCT). METHODS: We retrospectively assessed the diagnostic performance of plasma mcfDNA-Seq next-generation sequencing in 114 HCT recipients with pneumonia after HCT who had stored plasma obtained within 14 days of diagnosis of proven/probable Aspergillus IMI (n = 51), proven/probable non-Aspergillus IMI (n = 24), possible IMI (n = 20), and non-IMI controls (n = 19). Sequences were aligned to a database including >400 fungi. Organisms above a fixed significance threshold were reported. RESULTS: Among 75 patients with proven/probable pulmonary IMI, mcfDNA-Seq detected ≥1 pathogenic mold in 38 patients (sensitivity, 51% [95% confidence interval {CI}, 39%-62%]). When restricted to samples obtained within 3 days of diagnosis, sensitivity increased to 61%. McfDNA-Seq had higher sensitivity for proven/probable non-Aspergillus IMI (sensitivity, 79% [95% CI, 56%-93%]) compared with Aspergillus IMI (sensitivity, 31% [95% CI, 19%-46%]). McfDNA-Seq also identified non-Aspergillus molds in an additional 7 patients in the Aspergillus subgroup and Aspergillus in 1 patient with possible IMI. Among 19 non-IMI pneumonia controls, mcfDNA-Seq was negative in all samples, suggesting a high specificity (95% CI, 82%-100%) and up to 100% positive predictive value (PPV) with estimated negative predictive values (NPVs) of 81%-99%. The mcfDNA-Seq assay was complementary to serum galactomannan index testing; in combination, they were positive in 84% of individuals with proven/probable pulmonary IMI. CONCLUSIONS: Noninvasive mcfDNA-Seq had moderate sensitivity and high specificity, NPV, and PPV for pulmonary IMI after HCT, particularly for non-Aspergillus species.


Assuntos
Ácidos Nucleicos Livres , Transplante de Células-Tronco Hematopoéticas , Pneumonia , Fungos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Biópsia Líquida , Estudos Retrospectivos , Transplantados
9.
Appl Health Econ Health Policy ; 19(2): 231-241, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32944831

RESUMO

BACKGROUND: Invasive fungal infection is a major source of morbidity and mortality. The usage of microbial cell-free DNA for the detection and identification of invasive fungal infection has been considered as a potential alternative to invasive procedures allowing for rapid results. OBJECTIVE: This analysis aimed to assess the budget implications of using the Karius® Test in patients suspected of invasive fungal infection in an average state in the USA from a healthcare payer perspective. METHODS: The analysis used a decision tree to capture key stages of the patient pathway, from suspected invasive fungal infection to either receiving treatment for invasive fungal infection or being confirmed as having no invasive fungal infection. The analysis used published costs and resource use from a targeted review of the literature. Because of the paucity of published evidence on the reduction of diagnostic tests displaced by the Karius Test, the analysis used a 50% reduction in the use of bronchoscopy and/or bronchoalveolar lavage. The impact of this reduction was tested in a scenario analysis. RESULTS: The results of the analysis show that the introduction of the Karius Test is associated with a cost saving of US$2277 per patient; when multiplied by the estimated number of cases per year, the cost saving is US$17,039,666. The scenario analysis showed that the Karius Test only had an incremental cost of US$87 per patient when there was no reduction in bronchoscopy and bronchoalveolar lavage. CONCLUSIONS: The Karius Test may offer a valuable and timely option for the diagnosis of invasive fungal infection through its non-invasive approach and subsequent cost savings.


Assuntos
Ácidos Nucleicos Livres , Infecções Fúngicas Invasivas , Ácidos Nucleicos Livres/isolamento & purificação , Humanos , Hospedeiro Imunocomprometido , Infecções Fúngicas Invasivas/diagnóstico , Infecções Fúngicas Invasivas/economia
10.
JAMA Oncol ; 6(4): 552-556, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31855231

RESUMO

Importance: Bloodstream infection (BSI) is a common, life-threatening complication of treatment for cancer. Predicting BSI before onset of clinical symptoms would enable preemptive therapy, but there is no reliable screening test. Objective: To estimate sensitivity and specificity of plasma microbial cell-free DNA sequencing (mcfDNA-seq) for predicting BSI in patients at high risk of life-threatening infection. Design, Setting, and Participants: A prospective pilot cohort study of mcfDNA-seq for predicting BSI in pediatric patients (<25 years of age) with relapsed or refractory cancers at St Jude Children's Research Hospital, a specialist quaternary pediatric hematology-oncology referral center. Remnant clinical blood samples were collected during chemotherapy and hematopoietic cell transplantation. Samples collected during the 7 days before and at onset of BSI episodes, along with negative control samples from study participants, underwent blinded testing using a mcfDNA-seq test in a Clinical Laboratory Improvement Amendments/College of American Pathologists-approved laboratory. Main Outcomes and Measures: The primary outcomes were sensitivity of mcfDNA-seq for detecting a BSI pathogen during the 3 days before BSI onset and specificity of mcfDNA-seq in the absence of fever or infection in the preceding or subsequent 7 days. Results: Between August 9, 2017, and June 4, 2018, 47 participants (27 [57%] male; median age [IQR], 10 [5-14] years) were enrolled; 19 BSI episodes occurred in 12 participants, and predictive samples were available for 16 episodes, including 15 bacterial BSI episodes. In the 3 days before the onset of infection, predictive sensitivity of mcfDNA-seq was 75% for all BSIs (12 of 16; 95% CI, 51%-90%) and 80% (12 of 15; 95% CI, 55%-93%) for bacterial BSIs. The specificity of mcfDNA-seq, evaluated on 33 negative control samples from enrolled participants, was 82% (27 of 33; 95% CI, 66%-91%) for any bacterial or fungal organism and 91% (30 of 33; 95% CI, 76%-97%) for any common BSI pathogen, and the concentration of pathogen DNA was lower in control than predictive samples. Conclusions and Relevance: A clinically relevant pathogen can be identified by mcfDNA-seq days before the onset of BSI in a majority of episodes, potentially enabling preemptive treatment. Clinical application appears feasible pending further study. Trial Registration: ClinicalTrials.gov identifier: NCT03226158.


Assuntos
Infecções Relacionadas a Cateter/sangue , Ácidos Nucleicos Livres/sangue , Neoplasias/sangue , Sepse/sangue , Adolescente , Infecções Relacionadas a Cateter/complicações , Infecções Relacionadas a Cateter/microbiologia , Infecções Relacionadas a Cateter/patologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Neoplasias/complicações , Neoplasias/microbiologia , Neoplasias/patologia , Sepse/complicações , Sepse/microbiologia , Sepse/patologia , Análise de Sequência de DNA
11.
Pediatr Blood Cancer ; 66(7): e27734, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30941906

RESUMO

BACKGROUND: We sought to determine if next-generation sequencing (NGS) of microbial cell-free DNA (cfDNA) in plasma would detect pathogens in pediatric patients at risk for invasive fungal disease (IFD). PROCEDURES: Pediatric hematology, oncology, and stem cell transplant patients deemed at risk for new IFD had blood samples drawn at three time-points separated by 1-month intervals. The primary outcome measure was detection of fungal pathogens compared to standard clinical testing. Secondary outcomes included identification of other infectious pathogens, relationship to European Organization for Research and Treatment of Cancer's Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases' Mycoses Study Group (EORTC/MSG) guidelines, and assessment of antifungal therapy. RESULTS: NGS identified fungal pathogens in seven of 40 at-risk patients for IFD and results were identical in four of six proven cases, including Aspergillus fumigatus by lung biopsy, Candida albicans by blood or pancreatic pseudocyst cultures, and Rhizopus delemar by skin biopsy. Rhizopus oryzae identified on skin biopsy and A. fumigatus isolated on day 27 of 28 of culture from lung biopsy were not detected by cfDNA NGS, possibly due to lack of bloodstream penetration and questionable pathogenicity, respectively. Numerous DNA viruses were detected in patients with prolonged febrile neutropenia or abnormal imaging. Extended antifungal therapy was used in 73% of patients. Follow-up cfDNA sequencing in patients who were positive at enrollment was negative at 1 and 2 months. CONCLUSIONS: cfDNA NGS detected fungal pathogens from blood confirming its potential to guide treatment decisions in pediatric patients at risk for IFD and limit excessive empiric antifungal use. Future studies are needed to better understand the sensitivity and specificity of this approach.


Assuntos
Ácidos Nucleicos Livres , DNA Fúngico , Transplante de Células-Tronco Hematopoéticas , Sequenciamento de Nucleotídeos em Larga Escala , Infecções Fúngicas Invasivas , Neoplasias , Adolescente , Adulto , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Criança , Pré-Escolar , DNA Fúngico/sangue , DNA Fúngico/genética , Feminino , Humanos , Lactente , Infecções Fúngicas Invasivas/sangue , Infecções Fúngicas Invasivas/genética , Masculino , Neoplasias/sangue , Neoplasias/genética , Neoplasias/microbiologia , Neoplasias/terapia , Projetos Piloto
12.
Nat Microbiol ; 4(4): 663-674, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30742071

RESUMO

Thousands of pathogens are known to infect humans, but only a fraction are readily identifiable using current diagnostic methods. Microbial cell-free DNA sequencing offers the potential to non-invasively identify a wide range of infections throughout the body, but the challenges of clinical-grade metagenomic testing must be addressed. Here we describe the analytical and clinical validation of a next-generation sequencing test that identifies and quantifies microbial cell-free DNA in plasma from 1,250 clinically relevant bacteria, DNA viruses, fungi and eukaryotic parasites. Test accuracy, precision, bias and robustness to a number of metagenomics-specific challenges were determined using a panel of 13 microorganisms that model key determinants of performance in 358 contrived plasma samples, as well as 2,625 infections simulated in silico and 580 clinical study samples. The test showed 93.7% agreement with blood culture in a cohort of 350 patients with a sepsis alert and identified an independently adjudicated cause of the sepsis alert more often than all of the microbiological testing combined (169 aetiological determinations versus 132). Among the 166 samples adjudicated to have no sepsis aetiology identified by any of the tested methods, sequencing identified microbial cell-free DNA in 62, likely derived from commensal organisms and incidental findings unrelated to the sepsis alert. Analysis of the first 2,000 patient samples tested in the CLIA laboratory showed that more than 85% of results were delivered the day after sample receipt, with 53.7% of reports identifying one or more microorganisms.


Assuntos
Ácidos Nucleicos Livres/genética , Doenças Transmissíveis/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Estudos de Coortes , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/virologia , DNA Bacteriano/genética , DNA Fúngico/genética , DNA Viral/genética , Humanos , Sepse/diagnóstico , Sepse/microbiologia
13.
Open Forum Infect Dis ; 5(12): ofy301, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30581881

RESUMO

Allogeneic hematopoietic stem cell transplant patients are at risk for common and atypical infections. Superior diagnostics can decrease infection-related morbidity and mortality. A novel plasma cell-free DNA next-generation sequencing test detected an uncommon presentation of Chlamydia trachomatis and recurrent and metastatic complications of Staphylococcus aureus bacteremia before standard microbiology.

14.
Prenat Diagn ; 35(12): 1243-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26332378

RESUMO

OBJECTIVE: To evaluate the clinical performance of non-invasive prenatal testing for trisomy 21, 18, and 13 using targeted cell-free DNA (cfDNA) analysis. METHODS: Targeted cfDNA analysis using DANSR™ and FORTE™ with microarray quantitation was used to evaluate the risk of trisomy 21, 18, and 13 in blinded samples from 799 singleton, twin, natural, and IVF pregnancies. Subjects either had fetal chromosome evaluation by karyotype, FISH, QF-PCR, or karyotype for newborns with suspected aneuploidy at birth. The results of targeted cfDNA analysis were compared to clinical genetic testing outcomes to assess clinical performance. RESULTS: Targeted cfDNA analysis with microarray quantification identified 107/108 trisomy 21 cases (99.1%), 29/30 trisomy 18 cases (96.7%), and 12/12 trisomy 13 cases (100%). The specificity was 100% for all three trisomies. Combining this data with all published clinical performance studies using DANSR/FORTE methodology for greater than 23 000 pregnancies, the sensitivity of targeted cfDNA analysis was calculated to be greater than 99% for trisomy 21, 97% for trisomy 18, and 94% for trisomy 13. Specificity for each trisomy was greater than 99.9%. CONCLUSION: Targeted cfDNA analysis demonstrates consistently high sensitivity and extremely low false positive rates for common autosomal trisomies in pregnancy across quantitation platforms.


Assuntos
Testes para Triagem do Soro Materno/estatística & dados numéricos , Adulto , Ensaios Clínicos Controlados como Assunto , Feminino , Humanos , Testes para Triagem do Soro Materno/normas , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , Análise de Sequência de DNA
15.
N Engl J Med ; 372(17): 1589-97, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25830321

RESUMO

BACKGROUND: Cell-free DNA (cfDNA) testing for fetal trisomy is highly effective among high-risk women. However, there have been few direct, well-powered studies comparing cfDNA testing with standard screening during the first trimester in routine prenatal populations. METHODS: In this prospective, multicenter, blinded study conducted at 35 international centers, we assigned pregnant women presenting for aneuploidy screening at 10 to 14 weeks of gestation to undergo both standard screening (with measurement of nuchal translucency and biochemical analytes) and cfDNA testing. Participants received the results of standard screening; the results of cfDNA testing were blinded. Determination of the birth outcome was based on diagnostic genetic testing or newborn examination. The primary outcome was the area under the receiver-operating-characteristic curve (AUC) for trisomy 21 (Down's syndrome) with cfDNA testing versus standard screening. We also evaluated cfDNA testing and standard screening to assess the risk of trisomies 18 and 13. RESULTS: Of 18,955 women who were enrolled, results from 15,841 were available for analysis. The mean maternal age was 30.7 years, and the mean gestational age at testing was 12.5 weeks. The AUC for trisomy 21 was 0.999 for cfDNA testing and 0.958 for standard screening (P=0.001). Trisomy 21 was detected in 38 of 38 women (100%; 95% confidence interval [CI], 90.7 to 100) in the cfDNA-testing group, as compared with 30 of 38 women (78.9%; 95% CI, 62.7 to 90.4) in the standard-screening group (P=0.008). False positive rates were 0.06% (95% CI, 0.03 to 0.11) in the cfDNA group and 5.4% (95% CI, 5.1 to 5.8) in the standard-screening group (P<0.001). The positive predictive value for cfDNA testing was 80.9% (95% CI, 66.7 to 90.9), as compared with 3.4% (95% CI, 2.3 to 4.8) for standard screening (P<0.001). CONCLUSIONS: In this large, routine prenatal-screening population, cfDNA testing for trisomy 21 had higher sensitivity, a lower false positive rate, and higher positive predictive value than did standard screening with the measurement of nuchal translucency and biochemical analytes. (Funded by Ariosa Diagnostics and Perinatal Quality Foundation; NEXT ClinicalTrials.gov number, NCT01511458.).


Assuntos
DNA/análise , Síndrome de Down/diagnóstico , Medição da Translucência Nucal , Diagnóstico Pré-Natal/métodos , Adolescente , Adulto , Área Sob a Curva , Aberrações Cromossômicas , DNA/sangue , Síndrome de Down/genética , Reações Falso-Positivas , Feminino , Feto/anormalidades , Humanos , Pessoa de Meia-Idade , Gravidez , Primeiro Trimestre da Gravidez , Estudos Prospectivos , Sensibilidade e Especificidade , Método Simples-Cego , Adulto Jovem
16.
Am J Obstet Gynecol ; 207(2): 137.e1-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22742782

RESUMO

OBJECTIVE: We sought to evaluate performance of a noninvasive prenatal test for fetal trisomy 21 (T21) and trisomy 18 (T18). STUDY DESIGN: A multicenter cohort study was performed whereby cell-free DNA from maternal plasma was analyzed. Chromosome-selective sequencing on chromosomes 21 and 18 was performed with reporting of an aneuploidy risk (High Risk or Low Risk) for each subject. RESULTS: Of the 81 T21 cases, all were classified as High Risk for T21 and there was 1 false-positive result among the 2888 normal cases, for a sensitivity of 100% (95% confidence interval [CI], 95.5-100%) and a false-positive rate of 0.03% (95% CI, 0.002-0.20%). Of the 38 T18 cases, 37 were classified as High Risk and there were 2 false-positive results among the 2888 normal cases, for a sensitivity of 97.4% (95% CI, 86.5-99.9%) and a false-positive rate of 0.07% (95% CI, 0.02-0.25%). CONCLUSION: Chromosome-selective sequencing of cell-free DNA and application of an individualized risk algorithm is effective in the detection of fetal T21 and T18.


Assuntos
DNA/sangue , Síndrome de Down/diagnóstico , Diagnóstico Pré-Natal/métodos , Trissomia/diagnóstico , Adolescente , Adulto , Algoritmos , Cromossomos Humanos Par 18/genética , Cromossomos Humanos Par 21/genética , Feminino , Humanos , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Gravidez , Estudos Prospectivos , Medição de Risco , Sensibilidade e Especificidade , Trissomia/genética , Adulto Jovem
17.
Prenat Diagn ; 32(1): 3-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22223233

RESUMO

OBJECTIVE: To develop a novel prenatal assay based on selective analysis of cell-free DNA in maternal blood for evaluation of fetal Trisomy 21 (T21) and Trisomy 18 (T18). METHODS: Two hundred ninety-eight pregnancies, including 39 T21 and seven T18 confirmed fetal aneuploidies, were analyzed using a novel, highly multiplexed assay, termed digital analysis of selected regions (DANSR™). Cell-free DNA from maternal blood samples was analyzed using DANSR assays for loci on chromosomes 21 and 18. Products from 96 separate patients were pooled and sequenced together. A standard Z-test of chromosomal proportions was used to distinguish aneuploid samples from average-risk pregnancy samples. DANSR aneuploidy discrimination was evaluated at various sequence depths. RESULTS: At the lowest sequencing depth, corresponding to 204,000 sequencing counts per sample, average-risk cases where distinguished from T21 and T18 cases, with Z statistics for all cases exceeding 3.6. Increasing the sequencing depth to 410,000 counts per sample substantially improved separation of aneuploid and average-risk cases. A further increase to 620,000 counts per sample resulted in only marginal improvement. This depth of sequencing represents less than 5% of that required by massively parallel shotgun sequencing approaches. CONCLUSION: Digital analysis of selected regions enables highly accurate, cost efficient, and scalable noninvasive fetal aneuploidy assessment.


Assuntos
DNA/sangue , Síndrome de Down/diagnóstico , Complicações na Gravidez/diagnóstico , Gravidez/sangue , Diagnóstico Pré-Natal/métodos , Trissomia/diagnóstico , Adulto , Cromossomos Humanos Par 18/genética , Cromossomos Humanos Par 21/genética , Análise Custo-Benefício , Síndrome de Down/sangue , Síndrome de Down/genética , Feminino , Feto , Testes Genéticos/métodos , Humanos , Processamento de Imagem Assistida por Computador , Complicações na Gravidez/genética , Diagnóstico Pré-Natal/economia , Estudos Prospectivos , Reprodutibilidade dos Testes , Trissomia/genética
18.
Pediatr Crit Care Med ; 5(5): 434-9, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15329158

RESUMO

OBJECTIVE: To describe our experience with a Web-based communications program for the patients, families, and referring physicians of patients admitted to our pediatric intensive care unit. DESIGN: Prospective descriptive case series for a 32-month period from April 2000 through January 2003. SETTING: Sixteen-bed multidisciplinary medical-surgical pediatric intensive care unit (PICU). SUBJECTS: Seventy-three of 78 patients admitted to the PICU for > or =3 days and their families participated in the study, along with 26 referring physicians. INTERVENTION: None. MEASUREMENTS AND MAIN RESULTS: We found that 77% (474/619) of surveyed family members and friends thought that the Web page helped them share information, 13% (82/619) were unsure, and only <1% (4/619) thought it did not help them share information. When comparing respondents who thought the Web page helped them share information with those who did not or those who did not know, internet use was significantly associated with thinking that the Web page helped them share information (p =.0007). Seventy-three percent (19/26) of physicians thought that Web page-based communication was easier than present methods to convey patient information, and 62% (16/26) replied that the Web-based communication met their expectation. Fifty-four percent (14/26) of physicians thought they were more likely to refer patients to our PICU because of the Web-based communication; this was significantly associated with physician assessment that the Web-based communication was easier than the present methods of communicating with referring physicians (p =.003). CONCLUSIONS: We conclude that both families and referring physicians find Web-based communications during a child's PICU hospitalization to be very helpful. We suggest that the Web-based PICU communications be developed and studied for both medical and economic impact.


Assuntos
Estado Terminal/terapia , Sistemas de Comunicação no Hospital , Sistemas de Informação Hospitalar , Unidades de Terapia Intensiva Pediátrica , Internet , Criança , Pré-Escolar , Comunicação , Tratamento de Emergência , Feminino , Humanos , Lactente , Disseminação de Informação , Masculino , Relações Médico-Paciente , Relações Profissional-Família , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA