Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; : 168631, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821350

RESUMO

Mitophagy is a specific type of autophagy responsible for the selective elimination of dysfunctional or superfluous mitochondria, ensuring the maintenance of mitochondrial quality control. The initiation of mitophagy is coordinated by the ULK1 kinase complex, which engages mitophagy receptors via its FIP200 subunit. Whether FIP200 performs additional functions in the subsequent later phases of mitophagy beyond this initial step and how its regulation occurs, remains unclear. Our findings reveal that multiple phosphorylation events on FIP200 differentially control the early and late stages of mitophagy. Furthermore, these phosphorylation events influence FIP200's interaction with ATG16L1. In summary, our results highlight the necessity for precise and dynamic regulation of FIP200, underscoring its importance in the progression of mitophagy.

2.
EMBO Rep ; 25(2): 813-831, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38233718

RESUMO

Autophagy is initiated by the assembly of multiple autophagy-related proteins that form the phagophore assembly site where autophagosomes are formed. Atg13 is essential early in this process, and a hub of extensive phosphorylation. How these multiple phosphorylations contribute to autophagy initiation, however, is not well understood. Here we comprehensively analyze the role of phosphorylation events on Atg13 during nutrient-rich conditions and nitrogen starvation. We identify and functionally characterize 48 in vivo phosphorylation sites on Atg13. By generating reciprocal mutants, which mimic the dephosphorylated active and phosphorylated inactive state of Atg13, we observe that disrupting the dynamic regulation of Atg13 leads to insufficient or excessive autophagy, which are both detrimental to cell survival. We furthermore demonstrate an involvement of Atg11 in bulk autophagy even during nitrogen starvation, where it contributes together with Atg1 to the multivalency that drives phase separation of the phagophore assembly site. These findings reveal the importance of post-translational regulation on Atg13 early during autophagy initiation, which provides additional layers of regulation to control bulk autophagy activity and integrate cellular signals.


Assuntos
Autofagia , Proteínas de Saccharomyces cerevisiae , Fosforilação , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Transdução de Sinais , Nitrogênio , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nucleic Acids Res ; 51(21): 11748-11769, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37878419

RESUMO

Post-translational modifications of histones are important regulators of the DNA damage response (DDR). By using affinity purification mass spectrometry (AP-MS) we discovered that genetic suppressor element 1 (GSE1) forms a complex with the HDAC1/CoREST deacetylase/demethylase co-repressor complex. In-depth phosphorylome analysis revealed that loss of GSE1 results in impaired DDR, ATR signalling and γH2AX formation upon DNA damage induction. Altered profiles of ATR target serine-glutamine motifs (SQ) on DDR-related hallmark proteins point to a defect in DNA damage sensing. In addition, GSE1 knock-out cells show hampered DNA damage-induced phosphorylation on SQ motifs of regulators of histone post-translational modifications, suggesting altered histone modification. While loss of GSE1 does not affect the histone deacetylation activity of CoREST, GSE1 appears to be essential for binding of the deubiquitinase USP22 to CoREST and for the deubiquitination of H2B K120 in response to DNA damage. The combination of deacetylase, demethylase, and deubiquitinase activity makes the USP22-GSE1-CoREST subcomplex a multi-enzymatic eraser that seems to play an important role during DDR. Since GSE1 has been previously associated with cancer progression and survival our findings are potentially of high medical relevance.


Assuntos
Dano ao DNA , Histonas , Núcleo Celular/metabolismo , Proteínas Correpressoras/metabolismo , Enzimas Desubiquitinantes/genética , Histonas/genética , Histonas/metabolismo , Humanos , Animais , Camundongos , Linhagem Celular
4.
J Proteome Res ; 22(10): 3383-3391, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37712406

RESUMO

We present an effective, fast, and user-friendly method to reduce codigestion of bead-bound ligands, such as antibodies or streptavidin, in affinity purification-mass spectrometry experiments. A short preincubation of beads with Sulfo-NHS-Acetate leads to chemical acetylation of lysine residues, making ligands insusceptible to Lys-C-mediated proteolysis. In contrast to similar approaches, our procedure offers the advantage of exclusively using nontoxic chemicals and employing mild chemical reaction conditions. After binding of bait proteins to Sulfo-NHS-Acetate treated beads, we employ a two-step digestion protocol with the sequential use of Lys-C protease for on-bead digestion followed by in-solution digestion of the released proteins with trypsin. The implementation of this protocol results in a strong reduction of contaminating ligand peptides, which allows significantly higher amounts of sample to be subjected to LC-MS analysis, improving sensitivity and quantitative accuracy.

5.
Nat Commun ; 12(1): 7194, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34893607

RESUMO

Autophagosomes form at the endoplasmic reticulum in mammals, and between the vacuole and the endoplasmic reticulum in yeast. However, the roles of these sites and the mechanisms regulating autophagosome formation are incompletely understood. Vac8 is required for autophagy and recruits the Atg1 kinase complex to the vacuole. Here we show that Vac8 acts as a central hub to nucleate the phagophore assembly site at the vacuolar membrane during selective autophagy. Vac8 directly recruits the cargo complex via the Atg11 scaffold. In addition, Vac8 recruits the phosphatidylinositol 3-kinase complex independently of autophagy. Cargo-dependent clustering and Vac8-dependent sequestering of these early autophagy factors, along with local Atg1 activation, promote phagophore assembly site assembly at the vacuole. Importantly, ectopic Vac8 redirects autophagosome formation to the nuclear membrane, indicating that the vacuolar membrane is not specifically required. We propose that multiple avidity-driven interactions drive the initiation and progression of selective autophagy.


Assuntos
Autofagossomos/metabolismo , Macroautofagia , Vacúolos/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Endopeptidases , Humanos , Proteínas de Membrana , Membrana Nuclear/metabolismo , Proteínas Quinases , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte Vesicular/metabolismo , Leveduras
6.
Curr Opin Cell Biol ; 65: 50-57, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32203894

RESUMO

Autophagy is characterized by the formation of double-membrane vesicles called autophagosomes, which deliver bulk cytoplasmic material to the lytic compartment of the cell for degradation. Autophagosome formation is initiated by assembly and recruitment of the core autophagy machinery to distinct cellular sites, referred to as phagophore assembly sites (PAS) in yeast or autophagosome formation sites in other organisms. A large number of autophagy proteins involved in the formation of autophagosomes has been identified; however, how the individual components of the PAS are assembled and how they function to generate autophagosomes remains a fundamental question. Here, we highlight recent studies that provide molecular insights into PAS organization and the role of the endoplasmic reticulum and the vacuole in autophagosome formation.


Assuntos
Autofagossomos/metabolismo , Células/metabolismo , Autofagia , Modelos Biológicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
J Cell Sci ; 132(22)2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31649143

RESUMO

Autophagy is initiated by the formation of a phagophore assembly site (PAS), the precursor of autophagosomes. In mammals, autophagosome formation sites form throughout the cytosol in specialized subdomains of the endoplasmic reticulum (ER). In yeast, the PAS is also generated close to the ER, but always in the vicinity of the vacuole. How the PAS is anchored to the vacuole and the functional significance of this localization are unknown. Here, we investigated the role of the PAS-vacuole connection for bulk autophagy in the yeast Saccharomyces cerevisiae We show that Vac8 constitutes a vacuolar tether that stably anchors the PAS to the vacuole throughout autophagosome biogenesis via the PAS component Atg13. S. cerevisiae lacking Vac8 show inefficient autophagosome-vacuole fusion, and form fewer and smaller autophagosomes that often localize away from the vacuole. Thus, the stable PAS-vacuole connection established by Vac8 creates a confined space for autophagosome biogenesis between the ER and the vacuole, and allows spatial coordination of autophagosome formation and autophagosome-vacuole fusion. These findings reveal that the spatial regulation of autophagosome formation at the vacuole is required for efficient bulk autophagy.


Assuntos
Autofagossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Autofagia , Saccharomyces cerevisiae/citologia
8.
Nat Protoc ; 13(7): 1724, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29942004

RESUMO

In the version of this article initially published online, the authors used incorrectly defined restraints for specifying the distance between residues when using the HADDOCK portal. Following the publication of a Correspondence by the developers of the HADDOCK portal (Nat. Protoc. https://dx.doi.org/10.1038/s41596-018-0017-6, 2018) and a Reply by the authors of the Protocol (Nat. Protoc. https://dx.doi.org/10.1038/s41596-018-0018-5, 2018), the syntax in step 21 has been corrected. In addition, the input files (available as Supplementary Data 5-7) have been replaced.

10.
Nat Protoc ; 13(3): 478-494, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29419816

RESUMO

This protocol describes a workflow for creating structural models of proteins or protein complexes using distance restraints derived from cross-linking mass spectrometry experiments. The distance restraints are used (i) to adjust preliminary models that are calculated on the basis of a homologous template and primary sequence, and (ii) to select the model that is in best agreement with the experimental data. In the case of protein complexes, the cross-linking data are further used to dock the subunits to one another to generate models of the interacting proteins. Predicting models in such a manner has the potential to indicate multiple conformations and dynamic changes that occur in solution. This modeling protocol is compatible with many cross-linking workflows and uses open-source programs or programs that are free for academic users and do not require expertise in computational modeling. This protocol is an excellent additional application with which to use cross-linking results for building structural models of proteins. The established protocol is expected to take 6-12 d to complete, depending on the size of the proteins and the complexity of the cross-linking data.


Assuntos
Previsões/métodos , Espectrometria de Massas/métodos , Estrutura Terciária de Proteína/fisiologia , Simulação por Computador , Reagentes de Ligações Cruzadas/química , Modelos Moleculares , Estrutura Terciária de Proteína/genética , Proteínas/genética , Proteínas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA