Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurosci Insights ; 19: 26331055241249497, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680210

RESUMO

Recently we demonstrated a critical role for temporal coding of corticospinal activity in a prehension movement requiring precise forelimb control. Learning of precision isometric pull drives large-scale remodeling of corticospinal motor networks. Optogenetic modulation of corticospinal activity and full transection of the corticospinal tract disrupted critical functions of the network in expert animals resulting in impaired modulation of precise movements. In contrast, we observed more widespread corticospinal co-activation and limited temporal coding on a similar, yet more simplistic prehension task, adaptive isometric pull. Disrupting corticospinal neuron activity had much more limited effects on adaptive isometric pull, which was found to be corticospinal independent by transection of the corticospinal tract. Here we discuss these results in context of known roles for corticospinal and corticostriatal neurons in motor control, as well as some of the questions our study raised.

2.
Nat Commun ; 14(1): 2708, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169765

RESUMO

Motor skill learning relies on the plasticity of the primary motor cortex as task acquisition drives cortical motor network remodeling. Large-scale cortical remodeling of evoked motor outputs occurs during the learning of corticospinal-dependent prehension behavior, but not simple, non-dexterous tasks. Here we determine the response of corticospinal neurons to two distinct motor training paradigms and assess the role of corticospinal neurons in the execution of a task requiring precise modulation of forelimb movement and one that does not. In vivo calcium imaging in mice revealed temporal coding of corticospinal activity coincident with the development of precise prehension movements, but not more simplistic movement patterns. Transection of the corticospinal tract and optogenetic regulation of corticospinal activity show the necessity for patterned corticospinal network activity in the execution of precise movements but not simplistic ones. Our findings reveal a critical role for corticospinal network modulation in the learning and execution of precise motor movements.


Assuntos
Córtex Motor , Camundongos , Animais , Córtex Motor/fisiologia , Tratos Piramidais/fisiologia , Neurônios , Movimento/fisiologia , Aprendizagem/fisiologia
3.
Front Neurosci ; 15: 787690, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955735

RESUMO

Restoring sensory circuit function after spinal cord injury (SCI) is essential for recovery of movement, yet current interventions predominantly target motor pathways. Integrated cortical sensorimotor networks, disrupted by SCI, are critical for perceiving, shaping, and executing movement. Corticocortical connections between primary sensory (S1) and motor (M1) cortices are critical loci of functional plasticity in response to learning and injury. Following SCI, in the motor cortex, corticocortical circuits undergo dynamic remodeling; however, it remains unknown how rehabilitation shapes the plasticity of S1-M1 networks or how these changes may impact recovery of movement.

4.
J Neurosci ; 41(49): 10148-10160, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750228

RESUMO

Motor control requires precise temporal and spatial encoding across distinct motor centers that is refined through the repetition of learning. The recruitment of motor regions requires modulatory input to shape circuit activity. Here, we identify a role for the baso-cortical cholinergic pathway in the acquisition of a coordinated motor skill in mice. Targeted depletion of basal forebrain cholinergic neurons results in significant impairments in training on the rotarod task of coordinated movement. Cholinergic neuromodulation is required during training sessions as chemogenetic inactivation of cholinergic neurons also impairs task acquisition. Rotarod learning is known to drive refinement of corticostriatal neurons arising in both medial prefrontal cortex (mPFC) and motor cortex, and we have found that cholinergic input to both motor regions is required for task acquisition. Critically, the effects of cholinergic neuromodulation are restricted to the acquisition stage, as depletion of basal forebrain cholinergic neurons after learning does not affect task execution. Our results indicate a critical role for cholinergic neuromodulation of distant cortical motor centers during coordinated motor learning.SIGNIFICANCE STATEMENT Acetylcholine release from basal forebrain cholinergic neuron terminals rapidly modulates neuronal excitability, circuit dynamics, and cortical coding; all processes required for processing complex sensory information, cognition, and attention. We found that depletion or transient silencing of cholinergic inputs to anatomically isolated motor areas, medial prefrontal cortex (mPFC) and motor cortex, selectively led to significant impairments on coordinated motor learning; disrupting this baso-cortical network after acquisition elicited no effect on task execution. Our results indicate a pivotal role for cholinergic neuromodulation of distant cortical motor centers during coordinated motor learning. These findings support the concept that cognitive components (such as attention) are indispensable in the adjustment of motor output and training-induced improvements in motor performance.


Assuntos
Prosencéfalo Basal/fisiologia , Neurônios Colinérgicos/fisiologia , Aprendizagem/fisiologia , Desempenho Psicomotor/fisiologia , Animais , Atenção/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia
5.
Elife ; 92020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33263277

RESUMO

Sciatic nerve crush injury triggers sterile inflammation within the distal nerve and axotomized dorsal root ganglia (DRGs). Granulocytes and pro-inflammatory Ly6Chigh monocytes infiltrate the nerve first and rapidly give way to Ly6Cnegative inflammation-resolving macrophages. In axotomized DRGs, few hematogenous leukocytes are detected and resident macrophages acquire a ramified morphology. Single-cell RNA-sequencing of injured sciatic nerve identifies five macrophage subpopulations, repair Schwann cells, and mesenchymal precursor cells. Macrophages at the nerve crush site are molecularly distinct from macrophages associated with Wallerian degeneration. In the injured nerve, macrophages 'eat' apoptotic leukocytes, a process called efferocytosis, and thereby promote an anti-inflammatory milieu. Myeloid cells in the injured nerve, but not axotomized DRGs, strongly express receptors for the cytokine GM-CSF. In GM-CSF-deficient (Csf2-/-) mice, inflammation resolution is delayed and conditioning-lesion-induced regeneration of DRG neuron central axons is abolished. Thus, carefully orchestrated inflammation resolution in the nerve is required for conditioning-lesion-induced neurorepair.


Assuntos
Gânglios Espinais/imunologia , Leucócitos/imunologia , Macrófagos/imunologia , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/imunologia , Fagocitose , Nervo Isquiático/imunologia , Animais , Apoptose , Células Cultivadas , Subunidade beta Comum dos Receptores de Citocinas/genética , Subunidade beta Comum dos Receptores de Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Mediadores da Inflamação/metabolismo , Leucócitos/metabolismo , Leucócitos/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Monócitos/metabolismo , Crescimento Neuronal , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/patologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Transdução de Sinais
6.
Front Cell Dev Biol ; 8: 736, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015031

RESUMO

Neural injury in mammals often leads to persistent functional deficits as spontaneous repair in the peripheral nervous system (PNS) is often incomplete, while endogenous repair mechanisms in the central nervous system (CNS) are negligible. Peripheral axotomy elicits growth-associated gene programs in sensory and motor neurons that can support reinnervation of peripheral targets given sufficient levels of debris clearance and proximity to nerve targets. In contrast, while damaged CNS circuitry can undergo a limited amount of sprouting and reorganization, this innate plasticity does not re-establish the original connectivity. The utility of novel CNS circuitry will depend on effective connectivity and appropriate training to strengthen these circuits. One method of enhancing novel circuit connectivity is through the use of electrical stimulation, which supports axon growth in both central and peripheral neurons. This review will focus on the effects of CNS and PNS electrical stimulation in activating axon growth-associated gene programs and supporting the recovery of motor and sensory circuits. Electrical stimulation-mediated neuroplasticity represents a therapeutically viable approach to support neural repair and recovery. Development of appropriate clinical strategies employing electrical stimulation will depend upon determining the underlying mechanisms of activity-dependent axon regeneration and the heterogeneity of neuronal subtype responses to stimulation.

7.
Neurotherapeutics ; 15(3): 588-603, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29882081

RESUMO

The plasticity of sensorimotor systems in mammals underlies the capacity for motor learning as well as the ability to relearn following injury. Spinal cord injury, which both deprives afferent input and interrupts efferent output, results in a disruption of cortical somatotopy. While changes in corticospinal axons proximal to the lesion are proposed to support the reorganization of cortical motor maps after spinal cord injury, intracortical horizontal connections are also likely to be critical substrates for rehabilitation-mediated recovery. Intrinsic connections have been shown to dictate the reorganization of cortical maps that occurs in response to skilled motor learning as well as after peripheral injury. Cortical networks incorporate changes in motor and sensory circuits at subcortical or spinal levels to induce map remodeling in the neocortex. This review focuses on the reorganization of cortical networks observed after injury and posits a role of intracortical circuits in recovery.


Assuntos
Córtex Cerebral/fisiopatologia , Vias Neurais/fisiopatologia , Plasticidade Neuronal/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Humanos
8.
Neural Regen Res ; 12(5): 745-746, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28616027
9.
Neurosci Lett ; 652: 94-104, 2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-27939980

RESUMO

Restoring corticospinal function after spinal cord injury is a significant challenge as the corticospinal tract elicits no substantive, spontaneous regeneration, and its interruption leaves a permanent deficit. The corticospinal circuit serves multiple motor and sensory functions within the mammalian nervous system as the direct link between isocortex and spinal cord. Maturation of the corticospinal circuit involves the refinement of projections within the spinal cord and a subsequent refinement of motor maps within the cortex. The plasticity of these cortical motor maps mirrors the acquisition of skilled motor learning, and both the maps and motor skills are disrupted following injury to the corticospinal tract. The motor cortex exhibits the capacity to incorporate changes in corticospinal projections induced by both spontaneous and therapeutic-mediated plasticity of corticospinal axons through appropriate rehabilitation. An understanding of the mechanisms of corticospinal plasticity in motor learning will undoubtedly help inform strategies to improve motor rehabilitation after spinal cord injury.


Assuntos
Destreza Motora , Plasticidade Neuronal , Tratos Piramidais/fisiopatologia , Traumatismos da Medula Espinal/reabilitação , Animais , Axônios/patologia , Axônios/fisiologia , Humanos , Aprendizagem , Córtex Motor/fisiopatologia , Tratos Piramidais/patologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia
10.
Nat Neurosci ; 19(5): 697-705, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27065364

RESUMO

Limited functional recovery can be achieved through rehabilitation after incomplete spinal cord injury. Eliminating the function of a repulsive Wnt receptor, Ryk, in mice and rats by either conditional knockout in the motor cortex or monoclonal antibody infusion resulted in increased corticospinal axon collateral branches with presynaptic puncta in the spinal cord and enhanced recovery of forelimb reaching and grasping function following a cervical dorsal column lesion. Using optical stimulation, we observed that motor cortical output maps underwent massive changes after injury and that hindlimb cortical areas were recruited to control the forelimb over time. Furthermore, a greater cortical area was dedicated to controlling the forelimb in Ryk conditional knockout mice than in controls (wild-type or heterozygotes). In the absence of weekly task-specific training, recruitment of ectopic cortical areas was greatly reduced and there was no significant functional recovery even in Ryk conditional knockout mice. Our study provides evidence that maximal circuit reorganization and functional recovery can be achieved by combining molecular manipulation and targeted rehabilitation.


Assuntos
Córtex Motor/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Anticorpos Monoclonais/farmacologia , Mapeamento Encefálico , Terapia por Exercício , Feminino , Membro Anterior/fisiologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Tratos Piramidais/citologia , Tratos Piramidais/efeitos dos fármacos , Ratos , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Traumatismos da Medula Espinal/terapia
11.
Neurotherapeutics ; 13(2): 360-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26676670

RESUMO

…once the development was ended, the founts of growth and regeneration of the axons and dendrites dried up irrevocably. Santiago Ramón y Cajal Cajal's neurotropic theory postulates that the complexity of the nervous system arises from the collaboration of neurotropic signals from neuronal and non-neuronal cells and that once development has ended, a paucity of neurotropic signals means that the pathways of the central nervous system are "fixed, ended, immutable". While the capacity for regeneration and plasticity of the central nervous system may not be quite as paltry as Cajal proposed, regeneration is severely limited in scope as there is no spontaneous regeneration of long-distance projections in mammals and therefore limited opportunity for functional recovery following spinal cord injury. It is not a far stretch from Cajal to hypothesize that reappropriation of the neurotropic programs of development may be an appropriate strategy for reconstitution of injured circuits. It has become clear, however, that a significant number of the molecular cues governing circuit development become re-active after injury and many assume roles that paradoxically obstruct the functional re-wiring of severed neural connections. Therefore, the problem to address is how individual neural circuits respond to specific molecular cues following injury, and what strategies will be necessary for instigating functional repair or remodeling of the injured spinal cord.


Assuntos
Orientação de Axônios/fisiologia , Vias Neurais/fisiopatologia , Plasticidade Neuronal/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Efrinas/fisiologia , Humanos , Semaforinas/fisiologia
12.
Nat Commun ; 6: 6079, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25597627

RESUMO

Studies show that limited functional recovery can be achieved by plasticity and adaptation of the remaining circuitry in partial injuries in the central nervous system, although the new circuits that arise in these contexts have not been clearly identified or characterized. We show here that synaptic contacts from dorsal root ganglions to a small number of dorsal column neurons, a caudal extension of nucleus gracilis, whose connections to the thalamus are spared in a precise cervical level 1 lesion, underwent remodeling over time. These connections support proprioceptive functional recovery in a conditioning lesion paradigm, as silencing or eliminating the remodelled circuit completely abolishes the recovered proprioceptive function of the hindlimb. Furthermore, we show that blocking repulsive Wnt signalling increases axon plasticity and synaptic connections that drive greater functional recovery.


Assuntos
Neurônios/fisiologia , Recuperação de Função Fisiológica/fisiologia , Animais , Axônios/fisiologia , Feminino , Gânglios Espinais/fisiologia , Membro Posterior/inervação , Regeneração Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Ratos , Ratos Endogâmicos F344 , Traumatismos da Medula Espinal/fisiopatologia , Sinapses/fisiologia
13.
Exp Neurol ; 265: 30-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25541322

RESUMO

Molecular and cellular mechanisms underlying the peripheral conditioning lesion remain unsolved. We show here that injection of a chemical demyelinating agent, ethidium bromide, into the sciatic nerve induces a similar set of regeneration-associated genes and promotes a 2.7-fold greater extent of sensory axon regeneration in the spinal cord than sciatic nerve crush. We found that more severe peripheral demyelination correlates with more severe functional and electrophysiological deficits, but more robust central regeneration. Ethidium bromide injection does not activate macrophages at the demyelinated sciatic nerve site, as observed after nerve crush, but briefly activates macrophages in the dorsal root ganglion. This study provides a new method for investigating the underlying mechanisms of the conditioning response and suggests that loss of the peripheral myelin may be a major signal to change the intrinsic growth state of adult sensory neurons and promote regeneration.


Assuntos
Etídio/administração & dosagem , Compressão Nervosa/métodos , Regeneração Nervosa/efeitos dos fármacos , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/lesões , Animais , Células Cultivadas , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiologia , Regeneração Nervosa/fisiologia , Ratos , Ratos Endogâmicos F344
14.
Curr Opin Neurobiol ; 27: 232-40, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24927490

RESUMO

Many studies in the past decade have revealed the role and mechanisms of Wnt signaling in axon guidance during development and the reinduction of Wnt signaling in adult central nervous system axons upon traumatic injury, which has profound influences on axon regeneration. With 19 Wnts and 14 known receptors (10 Frizzleds (Fzds), Ryk, Ror1/2 and PTK7), the Wnt family signaling proteins contribute significantly to the wiring specificity of the complex brain and spinal cord circuitry. Subsequent investigation into the signaling mechanisms showed that conserved cell polarity pathways mediate growth cone steering. These cell polarity pathways may unveil general principles of growth cone guidance. The reappeared Wnt signaling system after spinal cord injury limits the regrowth of both descending and ascending motor and sensory axons. Therefore, the knowledge of Wnt signaling mechanisms learned from axon development can be applied to axon repair in adulthood.


Assuntos
Axônios/fisiologia , Transdução de Sinais/fisiologia , Traumatismos da Medula Espinal , Proteínas Wnt/metabolismo , Animais , Polaridade Celular/fisiologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia
15.
Proc Natl Acad Sci U S A ; 109(36): 14663-8, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22904192

RESUMO

Conditioning lesion of the peripheral branch of dorsal column axons is a well-known paradigm enabling the central branch to regenerate after injury to the spinal cord. However, only a small number of regenerating axons enter grafted substrates, and they do not grow beyond the lesion. We found that conditioning lesion induces, in addition to growth-stimulating genes, related to receptor tyrosine kinase (Ryk), a potent repulsive receptor for Wnts. Wnts are expressed around the site of spinal cord injury, and we found that grafted bone marrow stromal cells secreting the Wnt inhibitors secreted frizzled-related protein 2 or Wnt inhibitory factor 1 enhanced regeneration of the central branch after peripheral conditioning lesion. Furthermore, we found that Wnt4-expressing grafts caused dramatic long-range retraction of the injured central branch of conditioned dorsal root ganglion neurons. Macrophages accumulate along the path of receding axons but not around Wnt4-expressing cells, suggesting that the retraction of dorsal column axons is not a secondary effect of increased macrophages attracted by Wnt4. Therefore, Wnt-Ryk signaling is an inhibitory force co-induced with growth-stimulating factors after conditioning lesion. Overcoming Wnt inhibition may further enhance therapies being designed on the basis of the conditioning-lesion paradigm.


Assuntos
Axônios/fisiologia , Regeneração Nervosa/fisiologia , Neuropatia Ciática/fisiopatologia , Células Receptoras Sensoriais/fisiologia , Medula Espinal/citologia , Via de Sinalização Wnt/fisiologia , Animais , Axônios/metabolismo , Axônios/patologia , Transplante de Medula Óssea , Gânglios Espinais/citologia , Microscopia de Fluorescência , Ratos , Ratos Endogâmicos F344 , Células Estromais/transplante , Proteína Wnt4/metabolismo
16.
Front Mol Neurosci ; 5: 5, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363259

RESUMO

Wnt signaling is essential for axon wiring throughout the development of the nervous system in vertebrates and invertebrates. In rodents, Wnts are expressed in gradients that span the entire anterior-posterior (A-P) axis in the spinal cord and the medial-lateral axis in the superior colliculus. In the brainstem, Wnts are expressed in more complex gradients along the A-P axis. These gradients provide directional information for axon pathfinding and positional information for topographic mapping and are detected by cell polarity signaling pathways in the growth cone. The gradient expression of Wnts and the coordinated expression of Wnt signaling systems are regulated by mechanisms which are currently unknown. Injury to the adult spinal cord results in the re-induction of Wnts in multiple cell types around the lesion site and their signaling system in injured axons. The re-induced Wnts form gradients around the lesion site, with the lesion site being the peak. The re-inducedWnts may be responsible for the well-known retraction of descending motor axons through the receptor Ryk (related receptor tyrosine kinases). Wnt signaling is an appealing new therapeutic target for CNS repair. The mechanisms regulating the re-induction are unknown but will be informative for therapeutic design.

17.
Neurotherapeutics ; 8(4): 694-703, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21904786

RESUMO

Spinal cord injury permanently disrupts neuroanatomical circuitry and can result in severe functional deficits. These functional deficits, however, are not immutable and spontaneous recovery occurs in some patients. It is highly likely that this recovery is dependent upon spared tissue and the endogenous plasticity of the central nervous system. Neurotrophic factors are mediators of neuronal plasticity throughout development and into adulthood, affecting proliferation of neuronal precursors, neuronal survival, axonal growth, dendritic arborization and synapse formation. Neurotrophic factors are therefore excellent candidates for enhancing axonal plasticity and regeneration after spinal cord injury. Understanding growth factor effects on axonal growth and utilizing them to alter the intrinsic limitations on regenerative growth will provide potent tools for the development of translational therapeutic interventions for spinal cord injury.


Assuntos
Fatores de Crescimento Neural/uso terapêutico , Regeneração Nervosa/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Ensaios Clínicos como Assunto , Humanos , Plasticidade Neuronal/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos
18.
Cold Spring Harb Perspect Biol ; 2(7): a001867, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20519341

RESUMO

The regenerative capacity of injured adult mammalian central nervous system (CNS) tissue is very limited. Disease or injury that causes destruction or damage to neuronal networks typically results in permanent neurological deficits. Injury to the spinal cord, for example, interrupts vital ascending and descending fiber tracts of spinally projecting neurons. Because neuronal structures located proximal or distal to the injury site remain largely intact, a major goal of spinal cord injury research is to develop strategies to reestablish innervation lost as a consequence of injury. The growth inhibitory nature of injured adult CNS tissue is a major barrier to regenerative axonal growth and sprouting. An increasing complexity of molecular players is being recognized. CNS inhibitors fall into three general classes: members of canonical axon guidance molecules (e.g., semaphorins, ephrins, netrins), prototypic myelin inhibitors (Nogo, MAG, and OMgp) and chondroitin sulfate proteoglycans (lecticans, NG2). On the other end of the spectrum are molecules that promote neuronal growth and sprouting. These include growth promoting extracellular matrix molecules, cell adhesion molecules, and neurotrophic factors. In addition to environmental (extrinsic) growth regulatory cues, cell intrinsic regulatory mechanisms exist that greatly influence injury-induced neuronal growth. Various degrees of growth and sprouting of injured CNS neurons have been achieved by lowering extrinsic inhibitory cues, increasing extrinsic growth promoting cues, or by activation of cell intrinsic growth programs. More recently, combination therapies that activate growth promoting programs and at the same time attenuate growth inhibitory pathways have met with some success. In experimental animal models of spinal cord injury (SCI), mono and combination therapies have been shown to promote neuronal growth and sprouting. Anatomical growth often correlates with improved behavioral outcomes. Challenges ahead include testing whether some of the most promising treatment strategies in animal models are also beneficial for human patients suffering from SCI.


Assuntos
Axônios , Regeneração , Animais , Proteínas da Matriz Extracelular/fisiologia , Bainha de Mielina/fisiologia
19.
Mol Ther ; 18(8): 1496-500, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20502445

RESUMO

Adeno-associated virus (AAV) is capable of mediating retrograde viral transduction of central and peripheral neurons. This occurs at a relatively low efficiency, which we previously found to be dependent upon capsid serotype. We sought to augment retrograde transduction by providing increased axonal access to peripherally delivered AAV. Others have described utilizing full transection of peripheral nerves to mediate retrograde viral transduction of motor neurons. Here, we examined the ability of a transient demyelinating event to modulate levels of retrograde AAV transduction. Transient demyelination does not cause lasting functional deficits. Ethidium bromide (EtBr)-induced transient demyelination of the sciatic nerve resulted in significant elevation of retrograde transduction of both motor and sensory neurons. Retrograde transduction levels of motor neurons and heavily myelinated, large-diameter sensory neurons increased at least sixfold following peripheral delivery of self-complementary AAV serotype 1 (scAAV1) and serotype 2 (scAAV2), when preceded by demyelination. These findings identify a means of significantly enhancing retrograde vector transport for use in experimental paradigms requiring either retrograde neuronal identification and gene expression, or translational treatment paradigms.


Assuntos
Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/metabolismo , Dependovirus/genética , Nervo Isquiático/efeitos dos fármacos , Transdução Genética/métodos , Animais , Etídio/toxicidade , Feminino , Vetores Genéticos/genética , Imuno-Histoquímica , Masculino , Camundongos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Ratos , Nervo Isquiático/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo
20.
Nat Neurosci ; 12(9): 1106-13, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19648914

RESUMO

A principal objective of spinal cord injury (SCI) research is the restoration of axonal connectivity to denervated targets. We tested the hypothesis that chemotropic mechanisms would guide regenerating spinal cord axons to appropriate brainstem targets. We subjected rats to cervical level 1 (C1) lesions and combinatorial treatments to elicit axonal bridging into and beyond lesion sites. Lentiviral vectors expressing neurotrophin-3 (NT-3) were then injected into an appropriate brainstem target, the nucleus gracilis, and an inappropriate target, the reticular formation. NT-3 expression in the correct target led to reinnervation of the nucleus gracilis in a dose-related fashion, whereas NT-3 expression in the reticular formation led to mistargeting of regenerating axons. Axons regenerating into the nucleus gracilis formed axodendritic synapses containing rounded vesicles, reflective of pre-injury synaptic architecture. Thus, we report for the first time, to the best of our knowledge, the reinnervation of brainstem targets after SCI and an essential role for chemotropic axon guidance in target selection.


Assuntos
Axônios/fisiologia , Quimiotaxia/fisiologia , Regeneração Nervosa/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Sinapses/fisiologia , Animais , Axônios/ultraestrutura , Vértebras Cervicais , Potenciais Evocados , Feminino , Vetores Genéticos , Bulbo/fisiologia , Bulbo/ultraestrutura , Neurotrofina 3/genética , Neurotrofina 3/metabolismo , Ratos , Ratos Endogâmicos F344 , Formação Reticular/fisiologia , Nervo Isquiático/fisiologia , Células Receptoras Sensoriais/fisiologia , Células Receptoras Sensoriais/ultraestrutura , Medula Espinal/fisiopatologia , Sinapses/ultraestrutura , Vesículas Sinápticas/fisiologia , Vesículas Sinápticas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA