Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 6: 8362, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26471740

RESUMO

Assembly and maturation of synapses at the Drosophila neuromuscular junction (NMJ) depend on trans-synaptic neurexin/neuroligin signalling, which is promoted by the scaffolding protein Syd-1 binding to neurexin. Here we report that the scaffold protein spinophilin binds to the C-terminal portion of neurexin and is needed to limit neurexin/neuroligin signalling by acting antagonistic to Syd-1. Loss of presynaptic spinophilin results in the formation of excess, but atypically small active zones. Neuroligin-1/neurexin-1/Syd-1 levels are increased at spinophilin mutant NMJs, and removal of single copies of the neurexin-1, Syd-1 or neuroligin-1 genes suppresses the spinophilin-active zone phenotype. Evoked transmission is strongly reduced at spinophilin terminals, owing to a severely reduced release probability at individual active zones. We conclude that presynaptic spinophilin fine-tunes neurexin/neuroligin signalling to control active zone number and functionality, thereby optimizing them for action potential-induced exocytosis.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sinapses/metabolismo , Animais , Drosophila , Feminino , Proteínas Ativadoras de GTPase/metabolismo , Masculino , Domínios PDZ , Sinapses/ultraestrutura
2.
Traffic ; 15(9): 983-96, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24931707

RESUMO

In epithelial cells apical proteins are transported by specific transport carriers to the correct membrane domain. The composition of these carriers is heterogeneous and comprises components such as motor proteins, annexins, lectins, Rab GTPases and cargo molecules. Here, we provide biochemical and fluorescence microscopic data to show that the dynamin-related large GTPase Mx1 is a component of post-Golgi vesicles carrying the neurotrophin receptor p75(NTR) . Moreover, siRNA-mediated depletion of Mx1 significantly decreased the transport efficiency of apical proteins in MDCK cells. In conclusion, Mx1 plays a crucial role in the delivery of cargo molecules to the apical membrane of epithelial cells.


Assuntos
Células Epiteliais/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Transporte Proteico/fisiologia , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Cães , Complexo de Golgi/metabolismo , Células Madin Darby de Rim Canino , Microscopia de Fluorescência/métodos , Receptor de Fator de Crescimento Neural/metabolismo
3.
J Cell Biol ; 202(4): 667-83, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23960145

RESUMO

Synaptic vesicles (SVs) fuse at a specialized membrane domain called the active zone (AZ), covered by a conserved cytomatrix. How exactly cytomatrix components intersect with SV release remains insufficiently understood. We showed previously that loss of the Drosophila melanogaster ELKS family protein Bruchpilot (BRP) eliminates the cytomatrix (T bar) and declusters Ca(2+) channels. In this paper, we explored additional functions of the cytomatrix, starting with the biochemical identification of two BRP isoforms. Both isoforms alternated in a circular array and were important for proper T-bar formation. Basal transmission was decreased in isoform-specific mutants, which we attributed to a reduction in the size of the readily releasable pool (RRP) of SVs. We also found a corresponding reduction in the number of SVs docked close to the remaining cytomatrix. We propose that the macromolecular architecture created by the alternating pattern of the BRP isoforms determines the number of Ca(2+) channel-coupled SV release slots available per AZ and thereby sets the size of the RRP.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Vesículas Sinápticas/metabolismo , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA