Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 198(2): 246-259, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38237923

RESUMO

Early developmental exposure to environmental toxicants may play a role in the risk for developing autism. A variety of pesticides have direct effects on retinoic acid (RA) signaling and as RA signaling has important roles in neurodevelopment, such compounds may cause developmental neurotoxicity through an overlapping adverse outcome pathway. It is hypothesized that a pesticide's embryonic effects on retinoid function may correspond with neurobehavioral disruption later in development. In the current studies, we determined the effects of RA-acting pesticides on neurobehavioral development in zebrafish. Buprofezin and imazalil caused generalized hypoactivity in the larval motility test, whereas chlorothalonil and endosulfan I led to selective hypoactivity and hyperactivity, respectively. With buprofezin, chlorothalonil, and imazalil, hypoactivity and/or novel anxiety-like behaviors persisted in adulthood and buprofezin additionally decreased social attraction responses in adulthood. Endosulfan I did not produce significant adult behavioral effects. Using qPCR analyses of adult brain tissue, we observed treatment-induced alterations in RA synthesis or catabolic genes, indicating persistent changes in RA homeostasis. These changes were compound-specific, with respect to expression directionality, and potential patterns of homeostatic disruption. Results suggest the likely persistence of disruptions in RA signaling well into adulthood and may represent compensatory mechanisms following early life stage exposures. This study demonstrates that early developmental exposure to environmental toxicants that interfere with RA signaling causes short as well as long-term behavioral disruption in a well-established zebrafish behavioral model and expand upon the meaning of the RA adverse outcome pathway, indicating that observed effects likely correspond with the nature of underlying homeostatic effects.


Assuntos
Nitrilas , Praguicidas , Tiadiazinas , Peixe-Zebra , Animais , Tretinoína/toxicidade , Retinoides/farmacologia , Praguicidas/metabolismo , Endossulfano , Comportamento Animal
2.
Neurotoxicology ; 96: 240-253, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37149154

RESUMO

Neonicotinoid compounds are commonly used insecticides which have become increasingly used as replacements of older generations of insecticides, such as organophosphates. Given the established neurotoxicity of cholinergic toxicants, developmental neurotoxicity studies are needed to identify in vertebrate species the potential toxicity of these insecticides which act on nicotinic cholinergic receptors. Previously, developmental exposure to a neonicotinoid insecticide imidacloprid was shown to cause persisting neurobehavioral toxicity in zebrafish. The current study evaluated neurobehavioral effects of embryonic exposure to two other neonicotinoid insecticides, clothianidin (1-100 µM) and dinotefuran (1-100 µM) in zebrafish (5-120 h post-fertilization), concentrations below the threshold for increased lethality and overt dysmorphogenesis. Neurobehavioral tests were conducted at larval (6 days), adolescent (10 weeks) and adult (8 months) ages. Both compounds caused short-term behavioral effects on larval motility, although these effects were distinct from one another. At a lower concentration (1 µM) clothianidin increased dark-induced locomotor stimulation the second time the lights turned off, while a higher concentration (100 µM) reduced activity in the dark at its second presentation. By contrast, dinotefuran (10-100 µM) caused a general decrease in locomotion. Specific longer-term neurobehavioral toxicity after early developmental exposure was also seen. clothianidin (100 µM) reduced locomotor activity in the novel tank in adolescence and adulthood, as well as reduced baseline activity in the tap startle test (1-100 µM) and reduced activity early (1-10 µM) or throughout the predator avoidance test session (100 µM). In addition to locomotor effects, clothianidin altered the diving response in a dose-, age- and time-block-dependent manner (1 µM, 100 µM), causing fish to remain further away from a fast predator cue (100 µM) relative to controls. Dinotefuran produced comparatively fewer effects, increasing the diving response in adulthood (10 µM), but not adolescence, and suppressing initial locomotor activity in the predator avoidance test (1-10 µM). These data indicate that neonicotinoid insecticides may carry some of the same risks for vertebrates posed by other classes of insecticides, and that these adverse behavioral consequences of early developmental exposure are evident well into adulthood.


Assuntos
Inseticidas , Praguicidas , Animais , Inseticidas/toxicidade , Peixe-Zebra , Neonicotinoides/toxicidade
3.
Birth Defects Res ; 115(3): 357-370, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36369782

RESUMO

BACKGROUND: Human exposures to organophosphate flame retardants result from their use as additives in numerous consumer products. These agents are replacements for brominated flame retardants but have not yet faced similar scrutiny for developmental neurotoxicity. We examined a representative organophosphate flame retardant, triphenyl phosphate (TPP) and its potential effects on behavioral development and dopaminergic function. METHODS: Female Sprague-Dawley rats were given low doses of TPP (16 or 32 mg kg-1  day-1 ) via subcutaneous osmotic minipumps, begun preconception and continued into the early postnatal period. Offspring were administered a battery of behavioral tests from adolescence into adulthood, and littermates were used to evaluate dopaminergic synaptic function. RESULTS: Offspring with TPP exposures showed increased latency to begin eating in the novelty-suppressed feeding test, impaired object recognition memory, impaired choice accuracy in the visual signal detection test, and sex-selective effects on locomotor activity in adolescence (males) but not adulthood. Male, but not female, offspring showed marked increases in dopamine utilization in the striatum, evidenced by an increase in the ratio of the primary dopamine metabolite (3,4-dihydroxyphenylacetic acid) relative to dopamine levels. CONCLUSIONS: These results indicate that TPP has adverse effects that are similar in some respects to those of organophosphate pesticides, which were restricted because of their developmental neurotoxicity.


Assuntos
Retardadores de Chama , Humanos , Animais , Ratos , Masculino , Retardadores de Chama/toxicidade , Dopamina , Ratos Sprague-Dawley , Peixe-Zebra , Organofosfatos/toxicidade
4.
Neurotoxicol Teratol ; 87: 107011, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34224825

RESUMO

Organophosphate (OP) compounds comprise one of the most widely used classes of insecticides worldwide. OPs have been shown to have negative human health impacts, particularly developmental neurotoxicity. However, neurotoxic impacts in later adulthood and during the aging process are relatively uncharacterized. The present study examined diazinon (DZN), an OP, to determine the neurobehavioral consequences, in addition to mitochondrial dysfunction on a macroscale (whole organism basal respiration) and on a microscale (whole organ mitochondrial respiration), using zebrafish (ZF) as a model. One group of 14-month-old adult ZF were exposed acutely as adults (0.4, 1.25, and 4.0 µM) for five days and tested as adults, and another group was exposed developmentally 5-120 h post-fertilization (70, 210, and 700 nM) and tested at larval, adolescent, adult, and aging life stages. ZF exposed acutely as adults did not display many significant neurobehavioral impacts or mitochondrial dysfunction. Conversely, the embryonically exposed ZF showed altered behavioral functions at each stage of life which emerged and attenuated as fish transitioned from each developmental stage to the next. Mitochondrial oxygen consumptions measurement results for developmentally DZN exposed ZF showed significant increases in the low and middle dose groups in organs such as the brain and testes. Overall, there is an indication that early developmental exposure to DZN had continuing adverse neurobehavioral and cellular consequences throughout their lives well into adulthood and aging periods.


Assuntos
Envelhecimento/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Diazinon/toxicidade , Mitocôndrias/efeitos dos fármacos , Compostos Organofosforados/toxicidade , Animais , Larva/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Organofosfatos/toxicidade , Peixe-Zebra
5.
Neurotoxicology ; 81: 180-188, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33091435

RESUMO

Maternal toxicant exposure during gestation can have deleterious effects on neurobehavioral development of the offspring. The potential risks engendered by paternal toxicant exposure prior to conception have been largely understudied. Recently, we found that chronic THC exposure prior to conception in male rats causes long-lasting behavioral impairment in their offspring. The current study examined the effects of chronic preconception exposure to cannabis smoke extract in Sprague-Dawley rats at two different phases in sperm development. One group received daily subcutaneous (sc) injections of THC in cannabis extract at 4 mg/kg/day for 28 days until three days prior to mating with untreated females (late exposure group). Another group received the same regimen except they underwent 56 days of drug abstinence prior to mating (early exposure group). These were compared with a control group treated with vehicle. The offspring underwent a battery of tests for behavioral function to assess motor, emotional and cognitive function. On the elevated plus maze test, the offspring of both paternal cannabis smoke extract (CSE) exposure groups had significantly more time on the open arms than control offspring, indicative of greater risk-taking behavior. No significant main effects of CSE exposure were seen on adolescent or adult locomotor activity in the figure-8 apparatus. In the novel object recognition test, there was a significantly greater drop-off in novel object preference across the session in the male, but not female offspring of the late exposure group. There was also a sex-selective effect of paternal CSE treatment in the 16-arm radial maze test of memory function. Female offspring of the late exposure group had significantly more working memory errors than control females in the first half of the 12-session training sequence. No significant effects were seen in the operant visual signal sustained detection test of attention. This study shows that there are long-lasting behavioral consequences of preconception CSE exposure through the paternal lineage in rats.


Assuntos
Comportamento Animal/efeitos dos fármacos , Dronabinol/toxicidade , Alucinógenos/toxicidade , Exposição Paterna/efeitos adversos , Espermatogênese/efeitos dos fármacos , Animais , Cognição/efeitos dos fármacos , Teste de Labirinto em Cruz Elevado , Emoções/efeitos dos fármacos , Feminino , Locomoção , Masculino , Atividade Motora/efeitos dos fármacos , Teste de Campo Aberto , Ratos Sprague-Dawley , Fatores Sexuais
6.
Neurotoxicology ; 78: 57-63, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32045580

RESUMO

The potential health risks of cannabis are of growing concern, including effects on reproduction and development. Extensive research has investigated risks associated with maternal exposure to THC during gestation and its impacts on the development of offspring, but little research has been done regarding paternal THC exposure effects prior to conception. We have previously found that paternal THC exposure in rats causes changes in sperm methylation. In an initial study we also showed that a 12-day paternal THC exposure prior to conception alters locomotor activity and impairs cognitive function of their offspring. This study investigated the cross-generational effects of chronic paternal THC exposure in rats (0, 2, or 4 mg/kg/day SC for 28 days) prior to mating with drug naïve females. The offspring of THC-exposed male rats had significant alterations in locomotor activity and cognitive function. Specifically, during adolescence there was significant locomotor hyperactivity in the offspring of males exposed to 2 mg/kg/day of THC. During the novel object recognition task, the controls maintained their relative preference for the novel object across the duration of the ten-min session while the rats whose fathers received THC (2 mg/kg/day) showed a significantly greater drop-off in interest in the novel object during the second half of the session. Learning in the radial-arm maze was significantly delayed in the offspring of males exposed to 4 mg/kg/day of THC. This study shows that premating chronic paternal THC exposure at multiple dose regimens can cause long-lasting detrimental behavioral effects in their offspring, including abnormal locomotor activity and impaired cognitive function. Future studies should investigate the underlying mechanisms driving these aberrant developmental outcomes and seek to identify possible treatments of alleviation in the presence of paternal THC exposure.


Assuntos
Comportamento Animal/efeitos dos fármacos , Dronabinol/toxicidade , Exposição Paterna , Animais , Feminino , Locomoção/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos Sprague-Dawley , Reconhecimento Psicológico/efeitos dos fármacos
7.
Cerebellum ; 18(5): 922-931, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31478166

RESUMO

Cerebral and cerebellar hemispheres are known to be asymmetrical in structure and function, and previous literature supports that asymmetry extends to the neural dopamine systems. Using in vivo fixed potential amperometry with carbon fiber microelectrodes in anesthetized mice, the current study assessed hemispheric lateralization of stimulation-evoked dopamine in the nucleus accumbens (NAc) and the influence of the cerebellum in regulating this reward-associated pathway. Our results suggest that cerebellar output can modulate mesolimbic dopamine transmission, and this modulation contributes to asymmetrically lateralized dopamine release. Dopamine release did not differ between hemispheres when evoked by medial forebrain bundle (MFB) stimulation; however, dopamine release was significantly greater in the right NAc relative to the left when evoked by electrical stimulation of the cerebellar dentate nucleus (DN). Furthermore, cross-hemispheric talk between the left and right cerebellar DN does not seem to influence mesolimbic release given that lidocaine infused into the DN opposite to the stimulated DN did not alter release. These studies may provide a neurochemical mechanism for studies identifying the cerebellum as a relevant node for reward, motivational behavior, saliency, and inhibitory control. An increased understanding of the lateralization of dopaminergic systems may reveal novel targets for pharmacological interventions in neuropathology of the cerebellum and extending projections.


Assuntos
Cerebelo/fisiologia , Dopamina/fisiologia , Neurônios Dopaminérgicos/fisiologia , Lateralidade Funcional/fisiologia , Transmissão Sináptica/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Synapse ; : e22074, 2018 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-30317673

RESUMO

Midbrain dopaminergic neurons project to and modulate multiple highly interconnected modules of the basal ganglia, limbic system, and frontal cortex. Dopamine regulates behaviors associated with action selection in the striatum, reward in the nucleus accumbens (NAc), emotional processing in the amygdala, and executive functioning in the medial prefrontal cortex (mPFC). The multifunctionality of dopamine likely occurs at the individual synapses, with varied levels of phasic dopamine release acting on different receptor populations. This study aimed to characterize specific aspects of stimulation-evoked phasic dopamine transmission, beyond simple dopamine release, using in vivo fixed potential amperometry with carbon fiber recording microelectrodes positioned in either the dorsal striatum, NAc, amygdala, or mPFC of anesthetized mice. To summarize results, the present study found that the striatum and NAc had increased stimulation-evoked phasic dopamine release, faster dopamine uptake (leading to restricted dopamine diffusion), weaker autoreceptor functioning, greater supply levels of available dopamine, and increased dopaminergic responses to DAT blockade compared to the amygdala and mPFC. Overall, these findings indicate that phasic dopamine may have different modes of communication between striatal and corticolimbic regions, with the first being profuse in concentration, rapid, and synaptically confined and the second being more limited in concentration but longer lasting and spatially dispersed. An improved understanding of regional differences in dopamine transmission can lead to more efficient treatments for disorders related to dopamine dysfunction.

9.
Nutrients ; 10(5)2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29783637

RESUMO

The amount, composition, and sources of nutrition support provided to preterm infants is critical for normal growth and development, and particularly for structural and functional neurodevelopment. Although omega-3 long chain polyunsaturated fatty acids (LC-PUFA), and particularly docosahexanoic acid (DHA), are considered of particular importance, results from clinical trials with preterm infants have been inconclusive because of ethical limitations and confounding variables. A translational large animal model is needed to understand the structural and functional responses to DHA. Neurodevelopment of preterm pigs was evaluated in response to feeding formulas to term-equivalent age supplemented with DHA attached to phosphatidylserine (PS-DHA) or sunflower oil as the placebo. Newborn term pigs were used as a control for normal in utero neurodevelopment. Supplementing formula with PS-DHA increased weight of the brain, and particularly the cerebellum, at term-equivalent age compared with placebo preterm pigs (P's < 0.10 and 0.05 respectively), with a higher degree of myelination in all regions of the brain examined (all p < 0.06). Brains of pigs provided PS-DHA were similar in weight to newborn term pigs. Event-related brain potentials and performance in a novel object recognition test indicated the PS-DHA supplement accelerated development of sensory pathways and recognition memory compared with placebo preterm pigs. The PS-DHA did not increase weight gain, but was associated with higher survival. The benefits of PS-DHA include improving neurodevelopment and possibly improvement of survival, and justify further studies to define dose-response relations, compare benefits associated with other sources of DHA, and understand the mechanisms underlying the benefits and influences on the development of other tissues and organ systems.


Assuntos
Encéfalo/efeitos dos fármacos , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Neurogênese/efeitos dos fármacos , Fosfatidilserinas/administração & dosagem , Nascimento Prematuro , Fatores Etários , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Ácidos Docosa-Hexaenoicos/metabolismo , Potenciais Evocados/efeitos dos fármacos , Idade Gestacional , Imageamento por Ressonância Magnética , Fosfatidilserinas/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Células Receptoras Sensoriais/efeitos dos fármacos , Sus scrofa , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA