Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 380(6642): eabj5559, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37079666

RESUMO

Cells respond to mitochondrial poisons with rapid activation of the adenosine monophosphate-activated protein kinase (AMPK), causing acute metabolic changes through phosphorylation and prolonged adaptation of metabolism through transcriptional effects. Transcription factor EB (TFEB) is a major effector of AMPK that increases expression of lysosome genes in response to energetic stress, but how AMPK activates TFEB remains unresolved. We demonstrate that AMPK directly phosphorylates five conserved serine residues in folliculin-interacting protein 1 (FNIP1), suppressing the function of the folliculin (FLCN)-FNIP1 complex. FNIP1 phosphorylation is required for AMPK to induce nuclear translocation of TFEB and TFEB-dependent increases of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) and estrogen-related receptor alpha (ERRα) messenger RNAs. Thus, mitochondrial damage triggers AMPK-FNIP1-dependent nuclear translocation of TFEB, inducing sequential waves of lysosomal and mitochondrial biogenesis.


Assuntos
Proteínas Quinases Ativadas por AMP , Lisossomos , Mitocôndrias , Biogênese de Organelas , Proteínas Quinases Ativadas por AMP/metabolismo , Lisossomos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Humanos
2.
Cancer Discov ; 13(4): 1002-1025, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36715544

RESUMO

KRAS is the most frequently mutated oncogene in human lung adenocarcinomas (hLUAD), and activating mutations frequently co-occur with loss-of-function mutations in TP53 or STK11/LKB1. However, mutation of all three genes is rarely observed in hLUAD, even though engineered comutation is highly aggressive in mouse lung adenocarcinoma (mLUAD). Here, we provide a mechanistic explanation for this difference by uncovering an evolutionary divergence in the regulation of triosephosphate isomerase (TPI1). In hLUAD, TPI1 activity is regulated via phosphorylation at Ser21 by the salt inducible kinases (SIK) in an LKB1-dependent manner, modulating flux between the completion of glycolysis and production of glycerol lipids. In mice, Ser21 of TPI1 is a Cys residue that can be oxidized to alter TPI1 activity without a need for SIKs or LKB1. Our findings suggest this metabolic flexibility is critical in rapidly growing cells with KRAS and TP53 mutations, explaining why the loss of LKB1 creates a liability in these tumors. SIGNIFICANCE: Utilizing phosphoproteomics and metabolomics in genetically engineered human cell lines and genetically engineered mouse models (GEMM), we uncover an evolutionary divergence in metabolic regulation within a clinically relevant genotype of human LUAD with therapeutic implications. Our data provide a cautionary example of the limits of GEMMs as tools to study human diseases such as cancers. This article is highlighted in the In This Issue feature, p. 799.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Triose-Fosfato Isomerase , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Triose-Fosfato Isomerase/genética , Triose-Fosfato Isomerase/metabolismo
3.
Cancer Discov ; 9(11): 1606-1627, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31350328

RESUMO

Mutations in the LKB1 (also known as STK11) tumor suppressor are the third most frequent genetic alteration in non-small cell lung cancer (NSCLC). LKB1 encodes a serine/threonine kinase that directly phosphorylates and activates 14 AMPK family kinases ("AMPKRs"). The function of many of the AMPKRs remains obscure, and which are most critical to the tumor-suppressive function of LKB1 remains unknown. Here, we combine CRISPR and genetic analysis of the AMPKR family in NSCLC cell lines and mouse models, revealing a surprising critical role for the SIK subfamily. Conditional genetic loss of Sik1 revealed increased tumor growth in mouse models of Kras-dependent lung cancer, which was further enhanced by loss of the related kinase Sik3. As most known substrates of the SIKs control transcription, gene-expression analysis was performed, revealing upregulation of AP1 and IL6 signaling in common between LKB1- and SIK1/3-deficient tumors. The SIK substrate CRTC2 was required for this effect, as well as for proliferation benefits from SIK loss. SIGNIFICANCE: The tumor suppressor LKB1/STK11 encodes a serine/threonine kinase frequently inactivated in NSCLC. LKB1 activates 14 downstream kinases in the AMPK family controlling growth and metabolism, although which kinases are critical for LKB1 tumor-suppressor function has remained an enigma. Here we unexpectedly found that two understudied kinases, SIK1 and SIK3, are critical targets in lung cancer.This article is highlighted in the In This Issue feature, p. 1469.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Células A549 , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP , Animais , Sistemas CRISPR-Cas , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Edição de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Transplante de Neoplasias , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Carga Tumoral
5.
Nat Cell Biol ; 20(7): 740-741, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29941928
6.
Cell Metab ; 22(5): 907-21, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26456332

RESUMO

AMP-activated protein kinase (AMPK) is a central energy gauge that regulates metabolism and has been increasingly involved in non-metabolic processes and diseases. However, AMPK's direct substrates in non-metabolic contexts are largely unknown. To better understand the AMPK network, we use a chemical genetics screen coupled to a peptide capture approach in whole cells, resulting in identification of direct AMPK phosphorylation sites. Interestingly, the high-confidence AMPK substrates contain many proteins involved in cell motility, adhesion, and invasion. AMPK phosphorylation of the RHOA guanine nucleotide exchange factor NET1A inhibits extracellular matrix degradation, an early step in cell invasion. The identification of direct AMPK phosphorylation sites also facilitates large-scale prediction of AMPK substrates. We provide an AMPK motif matrix and a pipeline to predict additional AMPK substrates from quantitative phosphoproteomics datasets. As AMPK is emerging as a critical node in aging and pathological processes, our study identifies potential targets for therapeutic strategies.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adesão Celular/genética , Proteínas Oncogênicas/genética , Mapas de Interação de Proteínas/genética , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/genética , Animais , Movimento Celular/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Humanos , Proteínas Oncogênicas/metabolismo , Peptídeos/metabolismo , Fosforilação , Análise de Célula Única , Especificidade por Substrato
7.
Cancer Discov ; 3(8): 880-93, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23661552

RESUMO

The NF1 tumor suppressor protein neurofibromin is a negative regulator of Ras. Neurofibromin is dynamically regulated by the proteasome, and its degradation and reexpression are essential for maintaining appropriate levels of Ras-GTP. Like p53, NF1/neurofibromin can be inactivated in cancer by both mutations and excessive proteasomal destruction; however, little is known about the mechanisms that underlie this latter process. Here, we show that a Cullin 3 (Cul3)/kelch repeat and BTB domain-containing 7 complex controls both the regulated proteasomal degradation of neurofibromin and the pathogenic destabilization of neurofibromin in glioblastomas. Importantly, RNAi-mediated Cul3 ablation and a dominant-negative Cul3 directly stabilize neurofibromin, suppress Ras and extracellular signal-regulated kinase, and inhibit proliferation in an NF1-dependent manner. Moreover, in glioblastomas where neurofibromin is chronically destabilized, Cul3 inhibition restabilizes the protein and suppresses tumor development. Collectively, these studies show a previously unrecognized role for Cul3 in regulating Ras and provide a molecular framework that can be exploited to develop potential cancer therapies.


Assuntos
Glioblastoma/metabolismo , Neurofibromina 1/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Proteínas ras/metabolismo , Animais , Transformação Celular Neoplásica , Células Cultivadas , Proteínas Culina/metabolismo , Genes Supressores de Tumor , Glioblastoma/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Sistema de Sinalização das MAP Quinases , Camundongos , Células NIH 3T3 , Neurofibromina 1/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Transativadores/metabolismo , Ubiquitinação , Proteínas ras/genética
8.
Cancer Cell ; 16(1): 44-54, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19573811

RESUMO

Loss-of-function mutations in the NF1 tumor suppressor result in deregulated Ras signaling and drive tumorigenesis in the familial cancer syndrome neurofibromatosis type I. However, the extent to which NF1 inactivation promotes sporadic tumorigenesis is unknown. Here we report that NF1 is inactivated in sporadic gliomas via two mechanisms: excessive proteasomal degradation and genetic loss. NF1 protein destabilization is triggered by the hyperactivation of protein kinase C (PKC) and confers sensitivity to PKC inhibitors. However, complete genetic loss, which only occurs when p53 is inactivated, mediates sensitivity to mTOR inhibitors. These studies reveal an expanding role for NF1 inactivation in sporadic gliomagenesis and illustrate how different mechanisms of inactivation are utilized in genetically distinct tumors, which consequently impacts therapeutic sensitivity.


Assuntos
Genes Supressores de Tumor , Glioblastoma/genética , Glioma/genética , Mutação , Neurofibromatose 1/genética , Neurofibromina 1/antagonistas & inibidores , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Células 3T3 , Animais , Regulação para Baixo , Genes p53 , Genes ras , Glioblastoma/enzimologia , Glioma/enzimologia , Camundongos , Neurofibromatose 1/metabolismo , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
9.
Cancer Cell ; 10(6): 459-72, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17157787

RESUMO

Oncogene-induced senescence functions to limit tumor development. However, a complete understanding of the signals that trigger this type of senescence is currently lacking. We found that mutations affecting NF1, Raf, and Ras induce a global negative feedback response that potently suppresses Ras and/or its effectors. Moreover, these signals promote senescence by inhibiting the Ras/PI3K pathway, which can impact the senescence machinery through HDM2 and FOXO. This negative feedback program is regulated in part by RasGEFs, Sprouty proteins, RasGAPs, and MKPs. Moreover, these signals function in vivo in benign human tumors. Thus, the ultimate response to the aberrant activation of the Ras pathway is a multifaceted negative feedback signaling network that terminates the oncogenic signal and participates in the senescence response.


Assuntos
Senescência Celular , Genes ras/fisiologia , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Retroalimentação , Genes da Neurofibromatose 1/fisiologia , Genes do Retinoblastoma/fisiologia , Genes p53/fisiologia , Humanos , Camundongos , Neoplasias/genética , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/fisiologia , Células-Tronco/patologia , Quinases raf/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA