Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 617(7959): 200-207, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020024

RESUMO

In all species, ribosomes synthesize proteins by faithfully decoding messenger RNA (mRNA) nucleotide sequences using aminoacyl-tRNA substrates. Current knowledge of the decoding mechanism derives principally from studies on bacterial systems1. Although key features are conserved across evolution2, eukaryotes achieve higher-fidelity mRNA decoding than bacteria3. In human, changes in decoding fidelity are linked to ageing and disease and represent a potential point of therapeutic intervention in both viral and cancer treatment4-6. Here we combine single-molecule imaging and cryogenic electron microscopy methods to examine the molecular basis of human ribosome fidelity to reveal that the decoding mechanism is both kinetically and structurally distinct from that of bacteria. Although decoding is globally analogous in both species, the reaction coordinate of aminoacyl-tRNA movement is altered on the human ribosome and the process is an order of magnitude slower. These distinctions arise from eukaryote-specific structural elements in the human ribosome and in the elongation factor eukaryotic elongation factor 1A (eEF1A) that together coordinate faithful tRNA incorporation at each mRNA codon. The distinct nature and timing of conformational changes within the ribosome and eEF1A rationalize how increased decoding fidelity is achieved and potentially regulated in eukaryotic species.


Assuntos
Bactérias , Biossíntese de Proteínas , Humanos , Bactérias/genética , Bactérias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Imagem Individual de Molécula , Microscopia Crioeletrônica , Ribossomos/genética , Ribossomos/metabolismo
2.
Elife ; 112022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36264623

RESUMO

Rapid and accurate mRNA translation requires efficient codon-dependent delivery of the correct aminoacyl-tRNA (aa-tRNA) to the ribosomal A site. In mammals, this fidelity-determining reaction is facilitated by the GTPase elongation factor-1 alpha (eEF1A), which escorts aa-tRNA as an eEF1A(GTP)-aa-tRNA ternary complex into the ribosome. The structurally unrelated cyclic peptides didemnin B and ternatin-4 bind to the eEF1A(GTP)-aa-tRNA ternary complex and inhibit translation but have different effects on protein synthesis in vitro and in vivo. Here, we employ single-molecule fluorescence imaging and cryogenic electron microscopy to determine how these natural products inhibit translational elongation on mammalian ribosomes. By binding to a common site on eEF1A, didemnin B and ternatin-4 trap eEF1A in an intermediate state of aa-tRNA selection, preventing eEF1A release and aa-tRNA accommodation on the ribosome. We also show that didemnin B and ternatin-4 exhibit distinct effects on the dynamics of aa-tRNA selection that inform on observed disparities in their inhibition efficacies and physiological impacts. These integrated findings underscore the value of dynamics measurements in assessing the mechanism of small-molecule inhibition and highlight potential of single-molecule methods to reveal how distinct natural products differentially impact the human translation mechanism.


Assuntos
Produtos Biológicos , Aminoacil-RNA de Transferência , Animais , Humanos , Produtos Biológicos/metabolismo , Códon/metabolismo , Guanosina Trifosfato/metabolismo , Mamíferos/genética , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/metabolismo , Ribossomos/metabolismo , Aminoacil-RNA de Transferência/metabolismo
3.
Nat Chem ; 14(12): 1443-1450, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36123449

RESUMO

Ternatin-family cyclic peptides inhibit protein synthesis by targeting the eukaryotic elongation factor-1α. A potentially related cytotoxic natural product ('A3') was isolated from Aspergillus, but only 4 of its 11 stereocentres could be assigned. Here, we synthesized SR-A3 and SS-A3-two out of 128 possible A3 epimers-and discovered that synthetic SR-A3 is indistinguishable from naturally derived A3. Relative to SS-A3, SR-A3 exhibits an enhanced residence time and rebinding kinetics, as revealed by single-molecule fluorescence imaging of elongation reactions catalysed by eukaryotic elongation factor-1α in vitro. An increased residence time-stereospecifically conferred by the unique ß-hydroxyl in SR-A3-was also observed in cells. Consistent with its prolonged duration of action, thrice-weekly dosing with SR-A3 led to a reduced tumour burden and increased survival in an aggressive Myc-driven mouse lymphoma model. Our results demonstrate the potential of SR-A3 as a cancer therapeutic and exemplify an evolutionary mechanism for enhancing cyclic peptide binding kinetics via stereospecific side-chain hydroxylation.


Assuntos
Antineoplásicos , Imagem Individual de Molécula , Animais , Camundongos , Cinética , Antineoplásicos/farmacologia , Peptídeos Cíclicos/farmacologia
4.
Nucleic Acids Res ; 50(14): 8302-8320, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35808938

RESUMO

Translocation of messenger RNA (mRNA) and transfer RNA (tRNA) substrates through the ribosome during protein synthesis, an exemplar of directional molecular movement in biology, entails a complex interplay of conformational, compositional, and chemical changes. The molecular determinants of early translocation steps have been investigated rigorously. However, the elements enabling the ribosome to complete translocation and reset for subsequent protein synthesis reactions remain poorly understood. Here, we have combined molecular simulations with single-molecule fluorescence resonance energy transfer imaging to gain insights into the rate-limiting events of the translocation mechanism. We find that diffusive motions of the ribosomal small subunit head domain to hyper-swivelled positions, governed by universally conserved rRNA, can maneuver the mRNA and tRNAs to their fully translocated positions. Subsequent engagement of peptidyl-tRNA and disengagement of deacyl-tRNA from mRNA, within their respective small subunit binding sites, facilitate the ribosome resetting mechanism after translocation has occurred to enable protein synthesis to resume.


Assuntos
Fator G para Elongação de Peptídeos , Ribossomos , Fator G para Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/química , RNA de Transferência/metabolismo , Ribossomos/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(19): e2114214119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35500116

RESUMO

Argyrins are a family of naturally produced octapeptides that display promising antimicrobial activity against Pseudomonas aeruginosa. Argyrin B (ArgB) has been shown to interact with an elongated form of the translation elongation factor G (EF-G), leading to the suggestion that argyrins inhibit protein synthesis by interfering with EF-G binding to the ribosome. Here, using a combination of cryo-electron microscopy (cryo-EM) and single-molecule fluorescence resonance energy transfer (smFRET), we demonstrate that rather than interfering with ribosome binding, ArgB rapidly and specifically binds EF-G on the ribosome to inhibit intermediate steps of the translocation mechanism. Our data support that ArgB inhibits conformational changes within EF-G after GTP hydrolysis required for translocation and factor dissociation, analogous to the mechanism of fusidic acid, a chemically distinct antibiotic that binds a different region of EF-G. These findings shed light on the mechanism of action of the argyrin-class antibiotics on protein synthesis as well as the nature and importance of rate-limiting, intramolecular conformational events within the EF-G-bound ribosome during late-steps of translocation.


Assuntos
Antibacterianos , Fator G para Elongação de Peptídeos , Antibacterianos/metabolismo , Ácido Fusídico/farmacologia , Humanos , Oligopeptídeos , Fator G para Elongação de Peptídeos/metabolismo , Ribossomos/metabolismo , Translocação Genética
6.
Nature ; 595(7869): 741-745, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234344

RESUMO

Peptide-chain elongation during protein synthesis entails sequential aminoacyl-tRNA selection and translocation reactions that proceed rapidly (2-20 per second) and with a low error rate (around 10-3 to 10-5 at each step) over thousands of cycles1. The cadence and fidelity of ribosome transit through mRNA templates in discrete codon increments is a paradigm for movement in biological systems that must hold for diverse mRNA and tRNA substrates across domains of life. Here we use single-molecule fluorescence methods to guide the capture of structures of early translocation events on the bacterial ribosome. Our findings reveal that the bacterial GTPase elongation factor G specifically engages spontaneously achieved ribosome conformations while in an active, GTP-bound conformation to unlock and initiate peptidyl-tRNA translocation. These findings suggest that processes intrinsic to the pre-translocation ribosome complex can regulate the rate of protein synthesis, and that energy expenditure is used later in the translocation mechanism than previously proposed.


Assuntos
Fator G para Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas , Aminoacil-RNA de Transferência/genética , Ribossomos/metabolismo , Códon , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , RNA Mensageiro/genética
7.
RNA Biol ; 18(12): 2363-2375, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33938388

RESUMO

Kinetic characterization of ribosomal translocation is important for understanding the mechanism of elongation in protein synthesis. Here we have optimized a popular fluorescent-mRNA based translocation assay conducted in stopped-flow, by calibrating it with the functional tripeptide formation assay in quench-flow. We found that a fluorescently labelled mRNA, ten bases long from position +1 (mRNA+10), is best suited for both assays as it forms tripeptide at a fast rate equivalent to the longer mRNAs, and yet produces a large fluorescence change upon mRNA movement. Next, we compared the commonly used peptidyl tRNA analog, N-acetyl-Phe-tRNAPhe, with the natural dipeptidyl fMet-Phe-tRNAPhe in the stopped-flow assay. This analog translocates about two times slower than the natural dipeptidyl tRNA and produces biphasic kinetics. The rates reduce further at lower temperatures and with higher Mg2+ concentration, but improve with higher elongation factor G (EF-G) concentration, which increase both rate and amplitude of the fast phase significantly. In summary, we present here an improved real time assay for monitoring mRNA-translocation with the natural- and an N-Ac-analog of dipeptidyl tRNA.


Assuntos
Bioensaio/normas , Fatores de Alongamento de Peptídeos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Aminoacil-RNA de Transferência/genética , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Cinética , Fatores de Alongamento de Peptídeos/genética , RNA Mensageiro/genética , RNA de Transferência/genética , Ribossomos/genética , Espectrometria de Fluorescência
8.
Proc Natl Acad Sci U S A ; 117(7): 3610-3620, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32024753

RESUMO

The substrate for ribosomes actively engaged in protein synthesis is a ternary complex of elongation factor Tu (EF-Tu), aminoacyl-tRNA (aa-tRNA), and GTP. EF-Tu plays a critical role in mRNA decoding by increasing the rate and fidelity of aa-tRNA selection at each mRNA codon. Here, using three-color single-molecule fluorescence resonance energy transfer imaging and molecular dynamics simulations, we examine the timing and role of conformational events that mediate the release of aa-tRNA from EF-Tu and EF-Tu from the ribosome after GTP hydrolysis. Our investigations reveal that conformational changes in EF-Tu coordinate the rate-limiting passage of aa-tRNA through the accommodation corridor en route to the peptidyl transferase center of the large ribosomal subunit. Experiments using distinct inhibitors of the accommodation process further show that aa-tRNA must at least partially transit the accommodation corridor for EF-Tu⋅GDP to release. aa-tRNAs failing to undergo peptide bond formation at the end of accommodation corridor passage after EF-Tu release can be reengaged by EF-Tu⋅GTP from solution, coupled to GTP hydrolysis. These observations suggest that additional rounds of ternary complex formation can occur on the ribosome during proofreading, particularly when peptide bond formation is slow, which may serve to increase both the rate and fidelity of protein synthesis at the expense of GTP hydrolysis.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Aminoacil-RNA de Transferência/metabolismo , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Transferência Ressonante de Energia de Fluorescência , Guanosina Trifosfato/metabolismo , Cinética , Fator Tu de Elongação de Peptídeos/genética , Biossíntese de Proteínas , RNA de Transferência/genética , Aminoacil-RNA de Transferência/genética , Subunidades Ribossômicas Maiores/genética , Subunidades Ribossômicas Maiores/metabolismo , Ribossomos/genética
9.
Elife ; 82019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31478838

RESUMO

Small nucleolar RNAs (snoRNAs) are a diverse group of non-coding RNAs that direct chemical modifications at specific residues on other RNA molecules, primarily on ribosomal RNA (rRNA). SnoRNAs are altered in several cancers; however, their role in cell homeostasis as well as in cellular transformation remains poorly explored. Here, we show that specific subsets of snoRNAs are differentially regulated during the earliest cellular response to oncogenic RASG12V expression. We describe a novel function for one H/ACA snoRNA, SNORA24, which guides two pseudouridine modifications within the small ribosomal subunit, in RAS-induced senescence in vivo. We find that in mouse models, loss of Snora24 cooperates with RASG12V to promote the development of liver cancer that closely resembles human steatohepatitic hepatocellular carcinoma (HCC). From a clinical perspective, we further show that human HCCs with low SNORA24 expression display increased lipid content and are associated with poor patient survival. We next asked whether ribosomes lacking SNORA24-guided pseudouridine modifications on 18S rRNA have alterations in their biophysical properties. Single-molecule Fluorescence Resonance Energy Transfer (FRET) analyses revealed that these ribosomes exhibit perturbations in aminoacyl-transfer RNA (aa-tRNA) selection and altered pre-translocation ribosome complex dynamics. Furthermore, we find that HCC cells lacking SNORA24-guided pseudouridine modifications have increased translational miscoding and stop codon readthrough frequencies. These findings highlight a role for specific snoRNAs in safeguarding against oncogenic insult and demonstrate a functional link between H/ACA snoRNAs regulated by RAS and the biophysical properties of ribosomes in cancer.


Assuntos
Carcinogênese , Carcinoma Hepatocelular/patologia , Genes Supressores de Tumor/fisiologia , Neoplasias Hepáticas/patologia , Pseudouridina/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico 18S/metabolismo , RNA Nuclear Pequeno/fisiologia , Proteínas ras/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma Hepatocelular/mortalidade , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Hepáticas/mortalidade , Masculino , Camundongos , Pessoa de Meia-Idade , Biossíntese de Proteínas , RNA Nuclear Pequeno/genética , Ribossomos/metabolismo , Análise de Sobrevida , Adulto Jovem
10.
Elife ; 82019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31172942

RESUMO

Applying pre-steady state kinetics to an Escherichia-coli-based reconstituted translation system, we have studied how the antibiotic viomycin affects the accuracy of genetic code reading. We find that viomycin binds to translating ribosomes associated with a ternary complex (TC) consisting of elongation factor Tu (EF-Tu), aminoacyl tRNA and GTP, and locks the otherwise dynamically flipping monitoring bases A1492 and A1493 into their active conformation. This effectively prevents dissociation of near- and non-cognate TCs from the ribosome, thereby enhancing errors in initial selection. Moreover, viomycin shuts down proofreading-based error correction. Our results imply a mechanism in which the accuracy of initial selection is achieved by larger backward rate constants toward TC dissociation rather than by a smaller rate constant for GTP hydrolysis for near- and non-cognate TCs. Additionally, our results demonstrate that translocation inhibition, rather than error induction, is the major cause of cell growth inhibition by viomycin.


Assuntos
Antibacterianos/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Viomicina/farmacologia , Sistema Livre de Células
11.
Nucleic Acids Res ; 47(6): 3223-3232, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30759226

RESUMO

Natural products that target the eukaryotic ribosome are promising therapeutics to treat a variety of cancers. It is therefore essential to determine their molecular mechanism of action to fully understand their mode of interaction with the target and to inform the development of new synthetic compounds with improved potency and reduced cytotoxicity. Toward this goal, we have previously established a short synthesis pathway that grants access to multiple congeners of the lissoclimide family. Here we present the X-ray co-crystal structure at 3.1 Å resolution of C45, a potent congener with two A-ring chlorine-bearing stereogenic centers with 'unnatural' configurations, with the yeast 80S ribosome, intermolecular interaction energies of the C45/ribosome complex, and single-molecule FRET data quantifying the impact of C45 on both human and yeast ribosomes. Together, these data provide new insights into the role of unusual non-covalent halogen bonding interactions involved in the binding of this synthetic compound to the 80S ribosome.


Assuntos
Produtos Biológicos/química , Diterpenos/química , Modelos Moleculares , Ribossomos/química , Succinimidas/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Diterpenos/síntese química , Células Eucarióticas/química , Humanos , Ligação Proteica , RNA Ribossômico/química , RNA Ribossômico/genética , Ribossomos/genética , Saccharomyces cerevisiae/química , Succinimidas/síntese química
12.
Cell Rep ; 25(10): 2676-2688.e7, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30517857

RESUMO

Translocation moves the tRNA2⋅mRNA module directionally through the ribosome during the elongation phase of protein synthesis. Although translocation is known to entail large conformational changes within both the ribosome and tRNA substrates, the orchestrated events that ensure the speed and fidelity of this critical aspect of the protein synthesis mechanism have not been fully elucidated. Here, we present three high-resolution structures of intermediates of translocation on the mammalian ribosome where, in contrast to bacteria, ribosomal complexes containing the translocase eEF2 and the complete tRNA2⋅mRNA module are trapped by the non-hydrolyzable GTP analog GMPPNP. Consistent with the observed structures, single-molecule imaging revealed that GTP hydrolysis principally facilitates rate-limiting, final steps of translocation, which are required for factor dissociation and which are differentially regulated in bacterial and mammalian systems by the rates of deacyl-tRNA dissociation from the E site.


Assuntos
Guanosina Trifosfato/metabolismo , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Animais , Bactérias/metabolismo , Guanosina Trifosfato/química , Humanos , Hidrólise , Sítios Internos de Entrada Ribossomal , Mamíferos/metabolismo , Modelos Moleculares , Fator 2 de Elongação de Peptídeos/química , Fator 2 de Elongação de Peptídeos/metabolismo , Domínios Proteicos , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA de Transferência/química , Ribossomos/química
13.
Proc Natl Acad Sci U S A ; 113(4): 978-83, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26755601

RESUMO

Viomycin is a tuberactinomycin antibiotic essential for treating multidrug-resistant tuberculosis. It inhibits bacterial protein synthesis by blocking elongation factor G (EF-G) catalyzed translocation of messenger RNA on the ribosome. Here we have clarified the molecular aspects of viomycin inhibition of the elongating ribosome using pre-steady-state kinetics. We found that the probability of ribosome inhibition by viomycin depends on competition between viomycin and EF-G for binding to the pretranslocation ribosome, and that stable viomycin binding requires an A-site bound tRNA. Once bound, viomycin stalls the ribosome in a pretranslocation state for a minimum of ∼ 45 s. This stalling time increases linearly with viomycin concentration. Viomycin inhibition also promotes futile cycles of GTP hydrolysis by EF-G. Finally, we have constructed a kinetic model for viomycin inhibition of EF-G catalyzed translocation, allowing for testable predictions of tuberactinomycin action in vivo and facilitating in-depth understanding of resistance development against this important class of antibiotics.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Fator G para Elongação de Peptídeos/antagonistas & inibidores , Biossíntese de Proteínas/efeitos dos fármacos , Viomicina/farmacologia , Bactérias/metabolismo , Relação Dose-Resposta a Droga , Guanosina Trifosfato/química , Probabilidade , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Viomicina/metabolismo
14.
Sci Rep ; 5: 12970, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26264741

RESUMO

Elongation factor G (EF-G), a translational GTPase responsible for tRNA-mRNA translocation possesses a conserved histidine (H91 in Escherichia coli) at the apex of switch-II, which has been implicated in GTPase activation and GTP hydrolysis. While H91A, H91R and H91E mutants showed different degrees of defect in ribosome associated GTP hydrolysis, H91Q behaved like the WT. However, all these mutants, including H91Q, are much more defective in inorganic phosphate (Pi) release, thereby suggesting that H91 facilitates Pi release. In crystal structures of the ribosome bound EF-G•GTP a tight coupling between H91 and the γ-phosphate of GTP can be seen. Following GTP hydrolysis, H91 flips ~140° in the opposite direction, probably with Pi still coupled to it. This, we suggest, promotes Pi to detach from GDP and reach the inter-domain space of EF-G, which constitutes an exit path for the Pi. Molecular dynamics simulations are consistent with this hypothesis and demonstrate a vital role of an Mg(2+) ion in the process.


Assuntos
Sequência Conservada , Histidina/química , Fator G para Elongação de Peptídeos/química , Fosfatos/química , Sequência de Aminoácidos , Guanosina Trifosfato/química , Hidrólise , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
15.
J Biol Chem ; 290(6): 3440-54, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25451927

RESUMO

The antibiotic fusidic acid (FA) targets elongation factor G (EF-G) and inhibits ribosomal peptide elongation and ribosome recycling, but deeper mechanistic aspects of FA action have remained unknown. Using quench flow and stopped flow experiments in a biochemical system for protein synthesis and taking advantage of separate time scales for inhibited (10 s) and uninhibited (100 ms) elongation cycles, a detailed kinetic model of FA action was obtained. FA targets EF-G at an early stage in the translocation process (I), which proceeds unhindered by the presence of the drug to a later stage (II), where the ribosome stalls. Stalling may also occur at a third stage of translocation (III), just before release of EF-G from the post-translocation ribosome. We show that FA is a strong elongation inhibitor (K50% ≈ 1 µm), discuss the identity of the FA targeted states, and place existing cryo-EM and crystal structures in their functional context.


Assuntos
Antibacterianos/farmacologia , Ácido Fusídico/farmacologia , Fator G para Elongação de Peptídeos/antagonistas & inibidores , Inibidores da Síntese de Proteínas/farmacologia , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Fator G para Elongação de Peptídeos/metabolismo , Ribossomos/metabolismo
16.
J Biol Chem ; 289(44): 30334-30342, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25217634

RESUMO

We present a comprehensive analysis of stop codon usage in bacteria by analyzing over eight million coding sequences of 4684 bacterial sequences. Using a newly developed program called "stop codon counter," the frequencies of the three classical stop codons TAA, TAG, and TGA were analyzed, and a publicly available stop codon database was built. Our analysis shows that with increasing genomic GC content the frequency of the TAA codon decreases and that of the TGA codon increases in a reciprocal manner. Interestingly, the release factor 1-specific codon TAG maintains a more or less uniform frequency (∼20%) irrespective of the GC content. The low abundance of TAG is also valid with respect to expression level of the genes ending with different stop codons. In contrast, the highly expressed genes predominantly end with TAA, ensuring termination with either of the two release factors. Using three model bacteria with different stop codon usage (Escherichia coli, Mycobacterium smegmatis, and Bacillus subtilis), we show that the frequency of TAG and TGA codons correlates well with the relative steady state amount of mRNA and protein for release factors RF1 and RF2 during exponential growth. Furthermore, using available microarray data for gene expression, we show that in both fast growing and contrasting biofilm formation conditions, the relative level of RF1 is nicely correlated with the expression level of the genes ending with TAG.


Assuntos
Bactérias/genética , Genes Bacterianos , Composição de Bases , Códon de Terminação , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA