Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(11): 1328, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37847426

RESUMO

Sand dams are a form of rainwater harvesting, prolific in arid and semi-arid lands. Water is provided partly via handpumps, which, as the only improved method of abstraction from sand dams, are important for drinking water security. Accelerometers and cellular transmitters were fitted to 30 handpumps by the Africa Sand Dam Foundation (ASDF) in 2019 to monitor the use and reliability of the handpumps by recording hourly water volume abstracted. Data from April 2019 to October 2021 for 26 of these sites, alongside qualitative data, were analysed and each handpump's contribution to year-round water security was explored, focusing on the long dry season when water supply from other sources is compromised. Abstraction was over 20 times higher in the long dry season than in any other season, and at sites with higher salinity, higher livestock use, and larger dam wall area. At 21 wells, abstraction was still being recorded at the end of at least one long dry season; however, high spatial and temporal heterogeneity between pumps and seasons means that not all sand dams deliver reliable water supply year-round. Quantifying the contribution that sand dams make to water security is crucial for understanding their resilience against a changing climate and can aid decision makers when choosing the most appropriate water management technique. Knowledge of temporal and site heterogeneity in abstraction can inform when other water sources need increasing and can help with sand dam design optimisation. Overall, our results indicate the positive contribution that sand dams make to year-round water security through the water that is abstracted through handpumps.


Assuntos
Água Potável , Água , Areia , Reprodutibilidade dos Testes , Monitoramento Ambiental , Abastecimento de Água
2.
Reg Environ Change ; 23(2): 55, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033697

RESUMO

Weather extremes are the biggest challenge for supply chains worldwide, with food supply chains particularly exposed due to agriculture's sensitivity to weather conditions. Whilst attention has been paid to farm-level impacts from, and adaptation to, weather extremes, there remains a need to better understand how different actors along the supply chain suffer, react and adapt to these natural hazards and how their resilience-building strategies affect other actors' and the whole system's resilience. Taking the UK potato supply chain as a case study, this paper analyses the synergies and trade-offs in drought resilience in a multi-level food supply chain. Data from an online survey (87) and interviews with key informants (27) representing potato supply-chain actors (growers, packers, processors, retailers) were used to analyse drought risk perceptions, impacts and coping strategies, long-term resilience measures and further actions to build system resilience. Results suggest that the potato supply chain has increased its resilience to weather extremes due to retailers and packers having a wider geographical spread of supply, an increasing reliance on forward contracts and favouring growers with water security. However, a conceptual framework of resilience-building strategies adopted by supply chain actors shows that these measures are largely designed to reduce their own risk without considering implications for other parts of the chain and the system as a whole. A more integrated approach to promote drought resilience in complex food supply chains that enables improved vertical collaboration and trust between actors is therefore needed.

3.
Retin Cases Brief Rep ; 17(2): 165-169, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34709007

RESUMO

PURPOSE: To present novel findings in stellate nonhereditary idiopathic foveomacular retinoschisis, including the largest series of optical coherence tomography angiography findings to date. METHODS: A retrospective case series with multimodal imaging was obtained and reviewed. RESULTS: All three patients were women, aged 59-63. Two cases were unilateral, and one was bilateral. Vision ranged from 20/20 to 20/60 in the affected eyes. Peripheral retinoschisis was observed in all three patients. All patients were followed for a minimum of 1 year. In one case, progressive macular retinoschisis leading to foveal involvement was observed over two years, with an associated vision decline from 20/25 to 20/60. Attempted interventions included topical dorzolamide in all cases and intravitreal bevacizumab in one patient; however, no treatment effect was observed. The foveal avascular zone size was within normal limits (mean 280 µ m). In all stellate nonhereditary idiopathic foveomacular retinoschisis eyes, the retinoschisis cavities were nonvascular. CONCLUSION: Novel findings regarding stellate nonhereditary idiopathic foveomacular retinoschisis include the progressive nature of foveal involvement and the lack of response to topical dorzolamide and intravitreal bevacizumab. Foveal avascular zone was normal in all eyes, consistent with the relatively preserved vision in these cases. Retinoschisis cavities were nonvascular in all eyes, a finding which may give insight into the mechanism of this disease.


Assuntos
Retinosquise , Humanos , Feminino , Masculino , Tomografia de Coerência Óptica/métodos , Bevacizumab , Estudos Retrospectivos , Angiofluoresceinografia/métodos
4.
Sci Total Environ ; 756: 143172, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33257058

RESUMO

As the pressure to take action against global warming is growing in urgency, scenarios that incorporate multiple social, economic and environmental drivers become increasingly critical to support governments and other stakeholders in planning climate change mitigation or adaptation actions. This has led to the recent explosion of future scenario analyses at multiple scales, further accelerated since the development of the Intergovernmental Panel on Climate Change (IPCC) research community Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways (RCPs). While RCPs have been widely applied to climate models to produce climate scenarios at multiple scales for investigating climate change impacts, adaptation and vulnerabilities (CCIAV), SSPs are only recently being scaled for different geographical and sectoral applications. This is seen in the UK where significant investment has produced the RCP-based UK Climate Projections (UKCP18), but no equivalent UK version of the SSPs exists. We address this need by developing a set of multi-driver qualitative and quantitative UK-SSPs, following a state-of-the-art scenario methodology that integrates national stakeholder knowledge on locally-relevant drivers and indicators with higher level information from European and global SSPs. This was achieved through an intensive participatory process that facilitated the combination of bottom-up and top-down approaches to develop a set of UK-specific SSPs that are locally comprehensive, yet consistent with the global and European SSPs. The resulting scenarios balance the importance of consistency and legitimacy, demonstrating that divergence is not necessarily the result of inconsistency, nor comes as a choice to contextualise narratives at the appropriate scale.

5.
Glob Environ Change ; 65: 102159, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32982074

RESUMO

Scenarios describe plausible and internally consistent views of the future. They can be used by scientists, policymakers and entrepreneurs to explore the challenges of global environmental change given an appropriate level of spatial and sectoral detail and systematic development. We followed a nine-step protocol to extend and enrich a set of global scenarios - the Shared Socio-economic Pathways (SSPs) - providing regional and sectoral detail for European agriculture and food systems using a one-to-one nesting participatory approach. The resulting five Eur-Agri-SSPs are titled (1) Agriculture on sustainable paths, (2) Agriculture on established paths, (3) Agriculture on separated paths, (4) Agriculture on unequal paths, and (5) Agriculture on high-tech paths. They describe alternative plausible qualitative evolutions of multiple drivers of particular importance and high uncertainty for European agriculture and food systems. The added value of the protocol-based storyline development process lies in the conceptual and methodological transparency and rigor; the stakeholder driven selection of the storyline elements; and consistency checks within and between the storylines. Compared to the global SSPs, the five Eur-Agri-SSPs provide rich thematic and regional details and are thus a solid basis for integrated assessments of agriculture and food systems and their response to future socio-economic and environmental changes.

6.
J Environ Manage ; 252: 109701, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31629178

RESUMO

Moving towards a more sustainable future requires concerted actions, particularly in the context of global climate change. Integrated assessments of agricultural systems (IAAS) are considered valuable tools to provide sound information for policy and decision-making. IAAS use storylines to define socio-economic and environmental framework assumptions. While a set of qualitative global storylines, known as the Shared Socio-economic Pathways (SSPs), is available to inform integrated assessments at large scales, their spatial resolution and scope is insufficient for regional studies in agriculture. We present a protocol to operationalize the development of Shared Socio-economic Pathways for European agriculture - Eur-Agri-SSPs - to support IAAS. The proposed design of the storyline development process is based on six quality criteria: plausibility, vertical and horizontal consistency, salience, legitimacy, richness and creativity. Trade-offs between these criteria may occur. The process is science-driven and iterative to enhance plausibility and horizontal consistency. A nested approach is suggested to link storylines across scales while maintaining vertical consistency. Plausibility, legitimacy, salience, richness and creativity shall be stimulated in a participatory and interdisciplinary storyline development process. The quality criteria and process design requirements are combined in the protocol to increase conceptual and methodological transparency. The protocol specifies nine working steps. For each step, suitable methods are proposed and the intended level and format of stakeholder engagement are discussed. A key methodological challenge is to link global SSPs with regional perspectives provided by the stakeholders, while maintaining vertical consistency and stakeholder buy-in. We conclude that the protocol facilitates systematic development and evaluation of storylines, which can be transferred to other regions, sectors and scales and supports inter-comparisons of IAAS.


Assuntos
Agricultura , Mudança Climática , Fatores Socioeconômicos
7.
Environ Manage ; 64(2): 138-153, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31236623

RESUMO

One of the consequences of the generally agreed rise of global temperatures, furtherly exacerbated by the growth of water demand caused by the needs of a growing population, is an increase of areas with water stress. This will imply and in part is already implying, an always greater imbalance between water (and in particular drinking water) demand and supply. These issues are among those investigated by the "Adapting Drinking Water resources to the Impacts of Climate change in Europe" (ADWICE) project that had, among its main goals, the identification of priority adaptation measures aimed at reducing drinking water vulnerability to the pressures of a changing climate. In this paper these adaptation measures are described, with special attention given to their associated European water policy context. The complexity of designing and implementing such adaptation measures will benefit from integrating drinking water concerns with wider water management, within a framework able to facilitate the necessary complex collaborations between various actors involved in the different scales of the decision-making arena and to develop an effective science policy interfacing mechanism. Last, but not least, because drinking water is commonly considered by stakeholders and citizens to be a public service, drinking water managers should enable their involvement in the adaptation decision-making process, to ensure their acceptance and cooperation and to prevent conflicts.


Assuntos
Mudança Climática , Água Potável , Europa (Continente) , Recursos Hídricos , Abastecimento de Água
8.
Reg Environ Change ; 19(3): 711-721, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30956567

RESUMO

Climate change adaptation is a complex human process, framed by uncertainties and constraints, which is difficult to capture in existing assessment models. Attempts to improve model representations are hampered by a shortage of systematic descriptions of adaptation processes and their relevance to models. This paper reviews the scientific literature to investigate conceptualisations and models of climate change adaptation, and the ways in which representation of adaptation in models can be improved. The review shows that real-world adaptive responses can be differentiated along a number of dimensions including intent or purpose, timescale, spatial scale, beneficiaries and providers, type of action, and sector. However, models of climate change consequences for land use and water management currently provide poor coverage of these dimensions, instead modelling adaptation in an artificial and subjective manner. While different modelling approaches do capture distinct aspects of the adaptive process, they have done so in relative isolation, without producing improved unified representations. Furthermore, adaptation is often assumed to be objective, effective and consistent through time, with only a minority of models taking account of the human decisions underpinning the choice of adaptation measures (14%), the triggers that motivate actions (38%) or the time-lags and constraints that may limit their uptake and effectiveness (14%). No models included adaptation to take advantage of beneficial opportunities of climate change. Based on these insights, transferable recommendations are made on directions for future model development that may enhance realism within models, while also advancing our understanding of the processes and effectiveness of adaptation to a changing climate.

9.
Sci Total Environ ; 655: 35-47, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30469067

RESUMO

Holistic water management approaches are essential under future climate and socio-economic changes, especially while trying to achieve inter-disciplinary societal goals such as the Sustainable Development Goals (SDGs) of clean water, hunger eradication, clean energy and life on land. Assessing water resources within a water-food-energy-environment nexus approach enables the relationships between water-related sectors to be untangled while incorporating impacts of societal changes. We use a systems modelling approach to explore global change impacts on the nexus in the mid-21st century in a complex western Himalayan water resource system in India, considering a range of climate change and alternative socio-economic development scenarios. Results show that future socio-economic changes will have a much stronger impact on the nexus compared to climate change. Hydropower generation and environmental protection represent the major opportunities and limitations for adaptation in the studied system and should, thereby, be the focus for actions and systemic transformations in pursue of the SDGs. The emergence of scenario-specific synergies and trade-offs between nexus component indicators demonstrates the benefits that water resource systems models can make to designing better responses to the complex nexus challenges associated with future global change.

10.
Land Degrad Dev ; 29(8): 2378-2389, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30393451

RESUMO

Soils are vital for supporting food security and other ecosystem services. Climate change can affect soil functions both directly and indirectly. Direct effects include temperature, precipitation, and moisture regime changes. Indirect effects include those that are induced by adaptations such as irrigation, crop rotation changes, and tillage practices. Although extensive knowledge is available on the direct effects, an understanding of the indirect effects of agricultural adaptation options is less complete. A review of 20 agricultural adaptation case-studies across Europe was conducted to assess implications to soil threats and soil functions and the link to the Sustainable Development Goals (SDGs). The major findings are as follows: (a) adaptation options reflect local conditions; (b) reduced soil erosion threats and increased soil organic carbon are expected, although compaction may increase in some areas; (c) most adaptation options are anticipated to improve the soil functions of food and biomass production, soil organic carbon storage, and storing, filtering, transforming, and recycling capacities, whereas possible implications for soil biodiversity are largely unknown; and (d) the linkage between soil functions and the SDGs implies improvements to SDG 2 (achieving food security and promoting sustainable agriculture) and SDG 13 (taking action on climate change), whereas the relationship to SDG 15 (using terrestrial ecosystems sustainably) is largely unknown. The conclusion is drawn that agricultural adaptation options, even when focused on increasing yields, have the potential to outweigh the negative direct effects of climate change on soil degradation in many European regions.

11.
Proc Math Phys Eng Sci ; 473(2199): 20160706, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28413336

RESUMO

Flooding is a very costly natural hazard in the UK and is expected to increase further under future climate change scenarios. Flood defences are commonly deployed to protect communities and property from flooding, but in recent years flood management policy has looked towards solutions that seek to mitigate flood risk at flood-prone sites through targeted interventions throughout the catchment, sometimes using techniques which involve working with natural processes. This paper describes a project to provide a succinct summary of the natural science evidence base concerning the effectiveness of catchment-based 'natural' flood management in the UK. The evidence summary is designed to be read by an informed but not technically specialist audience. Each evidence statement is placed into one of four categories describing the nature of the underlying information. The evidence summary forms the appendix to this paper and an annotated bibliography is provided in the electronic supplementary material.

12.
Sci Total Environ ; 590-591: 818-831, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28285854

RESUMO

The combined indirect and direct impacts of land use change and climate change on river water quality were assessed. A land use allocation model was used to evaluate the response of the catchment land use to long-term climatic changes. Its results were used to drive a water quality model and assess the impact of climatic alterations on freshwater nitrate and phosphorus concentrations. Climatic projections were employed to estimate the likelihood of such response. The River Thames catchment (UK) was used as a case-study. If land use is considered as static parameter, according to the model results, climate change alone should reduce the average nitrate concentration, although just by a small amount, by the 2050s in the Lower Thames, due to reduced runoff (and lower export of nitrate from agricultural soils) and increased instream denitrification, and should increase the average phosphorus concentration by 12% by the 2050s in the Lower Thames, due to a reduction of the effluent dilution capacity of the river flow. However, the results of this study also show that these long-term climatic alterations are likely to lead to a reduction in the arable land in the Thames, replaced by improved grassland, due to a decrease in agriculture profitability in the UK. Taking into account the dynamic co-evolution of land use with climate, the average nitrate concentration is expected to be decreased by around 6% by the 2050s in both the upper and the lower Thames, following the model results, and the average phosphorus concentration increased by 13% in the upper Thames and 5% in the lower Thames. On the long term (2080s), nitrate is expected to decrease by 9% and 8% (upper and lower Thames respectively) and phosphorus not to change in the upper thames and increase by 5% in the lower Thames.

13.
Reg Environ Change ; 17(5): 1527-1540, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32025202

RESUMO

In many countries, drought is the natural hazard that causes the greatest agronomic impacts. After recurrent droughts, farmers typically learn from experience and implement changes in management to reduce their future drought risks and impacts. This paper aims to understand how irrigated agriculture in a humid climate has been affected by past droughts and how different actors have adapted their activities and strategies over time to increase their resilience. After examining recent drought episodes from an agroclimatic perspective, information from an online survey was combined with evidence from semi-structured interviews with farmers to assess: drought risk perceptions, impacts of past drought events, management strategies at different scales (regional to farm level) and responses to future risks. Interviews with the water regulatory agency were also conducted to explore their attitudes and decision-making processes during drought events. The results highlight how agricultural drought management strategies evolve over time, including how specific aspects have helped to reduce future drought risks. The importance of adopting a vertically integrated drought management approach in the farming sector coupled with a better understanding of past drought impacts and management options is shown to be crucial for improving decision-making during future drought events.

14.
Sci Total Environ ; 578: 297-306, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27839758

RESUMO

This article presents an innovative framework for analysing environmental governance challenges by focusing on their Drivers, Responses and Impacts (DRI). It builds on and modifies the widely applied Drivers, Pressures, States, Impacts and Responses (DPSIR) model. It suggests, firstly and most importantly, that the various temporal and spatial scales at which Drivers, Responses and Impacts operate should be included in the DRI conceptual framework. Secondly, the framework focuses on Drivers, Impacts and Responses in order to provide a parsimonious account of a drought system that can be informed by a range of social science, humanities and science data. 'Pressures' are therefore considered as a sub-category of 'Drivers'. 'States' are a sub-category of 'Impacts'. Thirdly, and most fundamentally in order to facilitate cross-disciplinary research of droughts, the DRI framework defines each of its elements, 'Drivers', 'Pressures', 'States', 'Impacts' and 'Responses' as capable of being shaped by both linked natural and social factors. This is different from existing DPSIR models which often see 'Responses' and 'Impacts' as located mainly in the social world, while 'States' are considered to be states within the natural environment only. The article illustrates this argument through an application of the DRI framework to the 1976 and 2003-6 droughts. The article also starts to address how - in cross-disciplinary research that encompasses physical and social sciences - claims about relationships between Drivers as well as Impacts of and Responses to drought over time can be methodologically justified. While the DRI framework has been inductively developed out of research on droughts we argue that it can be applied to a range of environmental governance challenges.


Assuntos
Secas , Meteorologia , Conservação dos Recursos Naturais , Meio Ambiente , Humanos , Análise Espaço-Temporal
15.
Sci Total Environ ; 576: 817-828, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27810766

RESUMO

Research on adaptation barriers is increasing as the need for climate change adaptation becomes evident. However, empirical studies regarding the emergence, causes and sustenance of adaptation barriers remain limited. This research identifies key contextual causes of adaptation barriers in water institutions in the mountainous Himalayan state of Himachal Pradesh in northern India. Semi-structured interviews were carried out with representatives from twenty-six key governmental, non-governmental, academic and research institutions in the State with responsibilities spanning domestic water supply, irrigation and hydropower generation, environmental monitoring and research. It identified low knowledge capacity and resources, policy implementation gaps, normative attitudes, and unavailability and inaccessibility of data and information compounded with weak interinstitutional networks as key adaptation barriers. Although these barriers are similar to those reported elsewhere, they have important locally-contextual root causes. For instance, inadequate resources result from fragmented resources allocation due to competing developmental priorities and the desire of the political leadership to please diverse electors, rather than climate scepticism. The identified individual barriers are found to be highly inter-dependent and closely intertwined which enables the identification of leverage points for interventions to maximise barrier removal. For instance, breaking down key barriers hindering accessibility to data and information, which are shaped by systemic bureaucracies and cultural attitudes, will involve attitudinal change through sensitisation to the importance of accurate and accessible data and information and the building trust between different actors, in addition to institutional structural changes through legislation and inter-institutional agreements. Approaching barriers as a system of contextually interconnected cultural, systemic, geographical and political underlying factors enriches the understanding of adaptation enablers, thereby contributing to achieving a better adapted society.


Assuntos
Mudança Climática , Recursos Hídricos , Abastecimento de Água , Atitude , Humanos , Índia , Água
16.
J Environ Manage ; 103: 142-53, 2012 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-22475720

RESUMO

The Water Framework Directive (WFD) (Directive 2000/60/EC) requires new ecological standards for rivers, lakes and coastal waters by 2015. In the United Kingdom the English Catchment Sensitive Farming Initiative has identified 40 catchments which are at risk of failing the European Commission WFD targets for good ecological status of water bodies because of a range of issues. The river Axe catchment situated in south-west England, with a mixture of diffuse and point sources of pollution, is one of these priority sites, as intensive dairy farming and cultivation of high risk crops (maize) cause problems with enhanced suspended sediment, nitrate and phosphorus levels in the river. Much of the Axe is under national and county landscape designations, making land use or management measures taken to achieve river status sensitive to these designations. For the purpose of this research the Soil and Water Assessment Tool (SWAT-2005) was used. The baseline scenario was based on field observation and interviews with the Environment Agency and farmers; it was run with and without point sources. Three different mitigation scenarios, designed to maintain the landscape of the catchment, were then tested. Field buffer strips (FBS), extensive land use management (EXT) and sheep land use management (SHP), were used to assess the effectiveness of the measures in reducing nutrient loads in the river Axe, UK. Management scenarios reduced the average annual loads at the main catchment outlet by 21.2% (FBS), 37.3% (EXT) and 45.0% (SHP), for total nitrogen and 47.7% (FBS), 60.6% (EXT) and 62.4% (SHP) for total phosphorus. The results of this study suggest that there may be a fundamental incompatibility between the delivery of WFD targets and the maintenance of viable agricultural systems necessary to maintain landscapes which are highly valued for their aesthetic, recreational and economic value.


Assuntos
Monitoramento Ambiental/métodos , Qualidade da Água , Modelos Teóricos , Nitratos/análise , Fósforo/análise , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA