Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 344: 118384, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37392692

RESUMO

Fire management across Australia's fire-prone 1.2 M km2 northern savannas region has been transformed over the past decade supported by the inception of Australia's national regulated emissions reduction market in 2012. Today, incentivised fire management is undertaken over a quarter of that entire region, providing a range of socio-cultural, environmental, and economic benefits, including for remote Indigenous (Aboriginal and Torres Strait Islander) communities and enterprises. Building on those advances, here we explore the emissions abatement potential for expanding incentivised fire management opportunities to include a contiguous fire-prone region, extending to monsoonal but annually lower (<600 mm) and more variable rainfall conditions, supporting predominantly shrubby spinifex (Triodia) hummock grasslands characteristic of much of Australia's deserts and semi-arid rangelands. Adapting a standard methodological approach applied previously for assessing savanna emissions parameters, we first describe fire regime and associated climatic attributes for a proposed ∼850,000 km2 lower rainfall (600-350 mm MAR) focal region. Second, based on regional field assessments of seasonal fuel accumulation, combustion, burnt area patchiness, and accountable methane and nitrous oxide Emission Factor parameters, we find that significant emissions abatement is feasible for regional hummock grasslands. This applies specifically for more frequently burnt sites under higher rainfall conditions if substantial early dry season prescribed fire management is undertaken resulting in marked reduction in late dry season wildfires. The proposed Northern Arid Zone (NAZ) focal envelope is substantially under Indigenous land ownership and management, and in addition to reducing emissions impacts associated with recurrent extensive wildfires, development of commercial landscape-scale fire management opportunities would significantly support social, cultural and biodiversity management aspirations as promoted by Indigenous landowners. Combined with existing regulated savanna fire management regions, inclusion of the NAZ under existing legislated abatement methodologies would effectively provide incentivised fire management covering a quarter of Australia's landmass. This could complement an allied (non-carbon) accredited method valuing combined social, cultural and biodiversity outcomes from enhanced fire management of hummock grasslands. Although the management approach has potential application to other international fire-prone savanna grasslands, caution is required to ensure that such practice does not result in irreversible woody encroachment and undesirable habitat change.


Assuntos
Incêndios , Pradaria , Motivação , Ecossistema , Biodiversidade , Poaceae , Austrália
2.
J Environ Manage ; 331: 117234, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36646040

RESUMO

Indigenous Australians used fire in spinifex deserts for millennia. These practices mostly ceased following European colonisation, but many contemporary Indigenous groups seek to restore 'right-way fire' practices, to meet inter-related social, economic, cultural and biodiversity objectives. However, measuring and reporting on the fire pattern outcomes of management is challenging, because the spatio-temporal patterns of right-way fire are not clearly defined, and because spatio-temporal variability in rainfall makes fire occurrence highly variable in these desert environments. We present an approach for measuring and reporting on fire management outcomes to account for spatio-temporal rainfall variability. The purpose is to support Indigenous groups to assess performance against their management targets, and lay the groundwork for developing an accredited method for valuing combined social, cultural and biodiversity outcomes. We reviewed fire management plans of desert Indigenous groups to identify spatial fire pattern indicators for right-way fire in spinifex deserts. We integrated annual rainfall surfaces with time-since fire mapping (using Landsat imagery) to create a new spatial dataset of accumulated rainfall-since-last-fire, that better represents post-fire vegetation recovery as categorised by local Indigenous people. The fire pattern indicators were merged into a single score using an environmental accounting approach. To strengthen interpretation, we developed an approach for identifying a control area with matching vegetation and fire history, up to the point of management. We applied these methods to a 125,000 ha case study area: Durba Hills, managed by the Martu people of Western Australia. Using a 20-year time series, we show that since right-way fire management at Durba Hills was re-introduced (2009), the fire pattern indicators have improved compared to those in the matched control area, and the composite result is closer to the fine-scaled mosaic of right-way fire pattern targets. Our approach could be used by Indigenous groups to track performance, and inform annual fire management planning. As the indicators are standardised for rainfall variation, results from multiple sites can be aggregated to track changes in performance at larger scales. Finally, our approach could be adapted for other fire-prone areas, both in Australia and internationally with high spatio-temporal rainfall variability, to improve management planning and evaluation.


Assuntos
Biodiversidade , Ecossistema , Humanos , Austrália , Poaceae , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA