Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(1): 165-174, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34914368

RESUMO

South Asian air is among the most polluted in the world, causing premature death of millions and asserting a strong perturbation of the regional climate. A central component is carbon monoxide (CO), which is a key modulator of the oxidizing capacity of the atmosphere and a potent indirect greenhouse gas. While CO concentrations are declining elsewhere, South Asia exhibits an increasing trend for unresolved reasons. In this paper, we use dual-isotope (δ13C and δ18O) fingerprinting of CO intercepted in the South Asian outflow to constrain the relative contributions from primary and secondary CO sources. Results show that combustion-derived primary sources dominate the wintertime continental CO fingerprint (fprimary ∼ 79 ± 4%), significantly higher than the global estimate (fprimary ∼ 55 ± 5%). Satellite-based inventory estimates match isotope-constrained fprimary-CO, suggesting observational convergence in source characterization and a prospect for model-observation reconciliation. This "ground-truthing" emphasizes the pressing need to mitigate incomplete combustion activities for climate/air quality benefits in South Asia.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monóxido de Carbono , Monitoramento Ambiental , Material Particulado/análise
2.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649226

RESUMO

The East Siberian Arctic Shelf holds large amounts of inundated carbon and methane (CH4). Holocene warming by overlying seawater, recently fortified by anthropogenic warming, has caused thawing of the underlying subsea permafrost. Despite extensive observations of elevated seawater CH4 in the past decades, relative contributions from different subsea compartments such as early diagenesis, subsea permafrost, methane hydrates, and underlying thermogenic/ free gas to these methane releases remain elusive. Dissolved methane concentrations observed in the Laptev Sea ranged from 3 to 1,500 nM (median 151 nM; oversaturation by ∼3,800%). Methane stable isotopic composition showed strong vertical and horizontal gradients with source signatures for two seepage areas of δ13C-CH4 = (-42.6 ± 0.5)/(-55.0 ± 0.5) ‰ and δD-CH4 = (-136.8 ± 8.0)/(-158.1 ± 5.5) ‰, suggesting a thermogenic/natural gas source. Increasingly enriched δ13C-CH4 and δD-CH4 at distance from the seeps indicated methane oxidation. The Δ14C-CH4 signal was strongly depleted (i.e., old) near the seeps (-993 ± 19/-1050 ± 89‰). Hence, all three isotope systems are consistent with methane release from an old, deep, and likely thermogenic pool to the outer Laptev Sea. This knowledge of what subsea sources are contributing to the observed methane release is a prerequisite to predictions on how these emissions will increase over coming decades and centuries.

3.
Ambio ; 50(5): 1074-1088, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33263919

RESUMO

A site in mid-western Sweden contaminated with chlorinated solvents originating from a previous dry cleaning facility, was investigated using conventional groundwater analysis combined with compound-specific isotope data of carbon, microbial DNA analysis, and geoelectrical tomography techniques. We show the value of this multidisciplinary approach, as the different results supported each interpretation, and show where natural degradation occurs at the site. The zone where natural degradation occurred was identified in the transition between two geological units, where the change in hydraulic conductivity may have facilitated biofilm formation and microbial activity. This observation was confirmed by all methods and the examination of the impact of geological conditions on the biotransformation process was facilitated by the unique combination of the applied methods. There is thus significant benefit from deploying an extended array of methods for these investigations, with the potential to reduce costs involved in remediation of contaminated sediment and groundwater.


Assuntos
Água Subterrânea , Tetracloroetileno , Poluentes Químicos da Água , Biodegradação Ambiental , Suécia , Tetracloroetileno/análise , Poluentes Químicos da Água/análise
4.
Ecol Evol ; 10(19): 10773-10784, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33072295

RESUMO

According to ecological theory, two species cannot occupy the same niche. Using nitrogen isotope analyses (δ15N) of amino acids, we tested the extent to which two sympatric deposit-feeding amphipods, Monoporeia affinis and Pontoporeia femorata, partition their trophic resources. We found that trophic position (TP) and resynthesis index (∑V; a proxy for degradation status of ingested material prior to assimilation by the consumer) differ between species. The surface-feeding M. affinis had higher TP and intermediate ∑V, both pointing to a large contribution of metazoans in its diet. P. femorata, which feeds in the subsurface layers, had lower TP and a bimodal distribution of the ∑V values, supporting previous experimental evidence of a larger feeding niche. We also evaluated whether TP and ∑V values have consequences for amphipod fecundity and embryo viability and found that embryo viability in M. affinis was negatively linked to TP. Our results indicate that the amino acid-δ15N data paired with information about reproductive status are useful for detecting differences in the trophic ecology of sympatric amphipods.

5.
Environ Sci Technol ; 54(19): 11771-11779, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32885963

RESUMO

Black carbon (BC) aerosols perturb climate and impoverish air quality/human health-affecting ∼1.5 billion people in South Asia. However, the lack of source-diagnostic observations of BC is hindering the evaluation of uncertain bottom-up emission inventories (EIs) and thereby also models/policies. Here, we present dual-isotope-based (Δ14C/δ13C) fingerprinting of wintertime BC at two receptor sites of the continental outflow. Our results show a remarkable similarity in contributions of biomass and fossil combustion, both from the site capturing the highly populated highly polluted Indo-Gangetic Plain footprint (IGP; Δ14C-fbiomass = 50 ± 3%) and the second site in the N. Indian Ocean representing a wider South Asian footprint (52 ± 6%). Yet, both sites reflect distinct δ13C-fingerprints, indicating a distinguishable contribution of C4-biomass burning from peninsular India (PI). Tailored-model-predicted season-averaged BC concentrations (700 ± 440 ng m-3) match observations (740 ± 250 ng m-3), however, unveiling a systematically increasing model-observation bias (+19% to -53%) through winter. Inclusion of BC from open burning alone does not reconcile predictions (fbiomass = 44 ± 8%) with observations. Direct source-segregated comparison reveals regional offsets in anthropogenic emission fluxes in EIs, overestimated fossil-BC in the IGP, and underestimated biomass-BC in PI, which contributes to the model-observation bias. This ground-truthing pinpoints uncertainties in BC emission sources, which benefit both climate/air-quality modeling and mitigation policies in South Asia.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Ásia , Carbono/análise , Monitoramento Ambiental , Humanos , Oceano Índico , Isótopos , Estações do Ano
6.
Sci Adv ; 5(1): eaau8066, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30729159

RESUMO

Light-absorbing organic aerosols, known as brown carbon (BrC), counteract the overall cooling effect of aerosols on Earth's climate. The spatial and temporal dynamics of their light-absorbing properties are poorly constrained and unaccounted for in climate models, because of limited ambient observations. We combine carbon isotope forensics (δ13C) with measurements of light absorption in a conceptual aging model to constrain the loss of light absorptivity (i.e., bleaching) of water-soluble BrC (WS-BrC) aerosols in one of the world's largest BrC emission regions-South Asia. On this regional scale, we find that atmospheric photochemical oxidation reduces the light absorption of WS-BrC by ~84% during transport over 6000 km in the Indo-Gangetic Plain, with an ambient first-order bleaching rate of 0.20 ± 0.05 day-1 during over-ocean transit across Bay of Bengal to an Indian Ocean receptor site. This study facilitates dynamic parameterization of WS-BrC absorption properties, thereby constraining BrC climate impact over South Asia.

7.
Environ Sci Technol ; 52(8): 4861-4868, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29565572

RESUMO

Stable nitrogen isotopes (δ15N) are used as indicators of trophic position (TP) of consumers. Deriving TP from δ15N of individual amino acids (AAs) is becoming popular in ecological studies, because of lower uncertainty than TP based on bulk δ15N (TPbulk). This method would also facilitate biomagnification studies provided that isotope fractionation is unaffected by toxic exposure. We compared TPAA and TPbulk estimates for a sediment-dwelling bivalve from two coastal sites, a pristine and a contaminated. Chemical analysis of PCB levels in mussels, sediments, and pore water confirmed the expected difference between sites. Both methods, but in particular the TPAA underestimated the actual TP of bivalves. Using error propagation, the total uncertainty related to the analytical precision and assumptions in the TP calculations was found to be similar between the two methods. Interestingly, the significantly higher intercept for the regression between TPAA and TPbulk in the contaminated site compared to the pristine site indicates a higher deamination rate due to detoxification as a result of chronic exposure and a higher 15N fractionation. Hence, there is a need for controlled experiments on assumptions underlying amino acid-specific stable isotope methods in food web and bimagnification studies.


Assuntos
Bivalves , Cadeia Alimentar , Animais , Isótopos de Carbono , Isótopos de Nitrogênio
8.
Sci Rep ; 7(1): 10422, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874801

RESUMO

Wintertime East Asia is plagued by severe haze episodes, characterized by large contributions of carbonaceous aerosols. However, the sources and atmospheric transformations of these major components are poorly constrained, hindering development of efficient mitigation strategies and detailed modelling of effects. Here we present dual carbon isotope (δ13C and Δ14C) signatures for black carbon (BC), organic carbon (OC) and water-soluble organic carbon (WSOC) aerosols collected in urban (Beijing and BC for Shanghai) and regional receptors (e.g., Korea Climate Observatory at Gosan) during January 2014. Fossil sources (>50%) dominate BC at all sites with most stemming from coal combustion, except for Shanghai, where liquid fossil source is largest. During source-to-receptor transport, the δ13C fingerprint becomes enriched for WSOC but depleted for water-insoluble OC (WIOC). This reveals that the atmospheric processing of these two major pools are fundamentally different. The photochemical aging (e.g., photodissociation, photooxidation) during formation and transport can release CO2/CO or short-chain VOCs with lighter carbon, whereas the remaining WSOC becomes increasingly enriched in δ13C. On the other hand, several processes, e.g., secondary formation, rearrangement reaction in the particle phase, and photooxidation can influence WIOC. Taken together, this study highlights high fossil contributions for all carbonaceous aerosol sub-compartments in East Asia, and suggests different transformation pathways for different classes of carbonaceous aerosols.

9.
Sci Total Environ ; 551-552: 327-33, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26878644

RESUMO

Methyl chloride and methyl bromide (CH3Cl and CH3Br) are the largest natural sources of chlorine and bromine, respectively, to the stratosphere, where they contribute to ozone depletion. We report the anthropogenic production of CH3Cl and CH3Br during breadbaking, and suggest this production is an abiotic process involving the methyl ester functional groups in pectin and lignin structural polymers of plant cells. Wide variations in baking styles allow only rough estimates of this flux of methyl halides on a global basis. A simple model suggests that CH3Br emissions from breadbaking likely peaked circa 1990 at approximately 200tonnes per year (about 0.3% of industrial production), prior to restrictions on the dough conditioner potassium bromate. In contrast, CH3Cl emissions from breadbaking may be of similar magnitude as acknowledged present-day CH3Cl industrial emissions. Because the mechanisms involve functional groups and compounds widely found in plant materials, this type of methyl halide production may occur in other cooking techniques as well.

10.
Rapid Commun Mass Spectrom ; 29(24): 2341-8, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26563705

RESUMO

RATIONALE: The environmental occurrence of chlorinated acetic acids (CAAs) has been extensively studied, but the sources and transport are still not yet fully understood. A promising approach for source apportionment and process studies is the isotopic characterization of target compounds. We present the first on-line stable chlorine isotope analysis of CAAs by use of gas chromatography/quadrupole mass spectrometry (GC/qMS). METHODS: Following approved procedures for concentration analysis, CAAs extracted into MTBE were methylated to GC-amenable methyl esters (mCAAs). These mCAAs were then analyzed by GC/qMS for their stable chlorine isotope composition using a sample/standard-bracketing approach (CAA standards in the range δ(37) Cl -6.3 to -0.2 ‰, Standard Mean Ocean Chloride). RESULTS: Cross-calibration of the herein presented method with off-line reference methods (thermal ionization and continuous-flow GC isotope ratio mass spectrometry; TI-MS and CF-GC/IRMS, respectively) shows good agreement between the methods (regression slope for GC/qMS vs reference method data sets: 0.92 ± 0.29). Sample amounts as small as 10 pmol Cl can herewith be analyzed with a precision of 0.1 to 0.4 ‰. CONCLUSIONS: This method should be useful for environmental studies of CAAs at ambient concentrations in precipitations (<0.06 to 100 nmol L(-1) ), surface waters (<0.2 to 5 nmol L(-1) ) and soil (<0.6 to 2000 nmol kg(-1) dry soil) where conventional off-line methods cannot be applied.


Assuntos
Acetatos/análise , Acetatos/química , Cloro/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Isótopos/análise , Halogenação
11.
Environ Sci Technol ; 47(12): 6449-56, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23668287

RESUMO

Two-dimensional compound-specific isotope analysis (2D-CSIA), combining stable carbon and chlorine isotopes, holds potential for monitoring of natural attenuation of chlorinated ethenes (CEs) in contaminated soil and groundwater. However, interpretation of 2D-CSIA data sets is challenged by a shortage of experimental Cl isotope enrichment factors. Here, isotope enrichments factors for C and Cl (i.e., εC and εCl) were determined for biodegradation of tetrachloroethene (PCE) and trichloroethene (TCE) using microbial enrichment cultures from a heavily CE-contaminated aquifer. The obtained values were εC = -5.6 ± 0.7‰ (95% CI) and εCl = -2.0 ± 0.5‰ for PCE degradation and εC = -8.8 ± 0.2‰ and εCl = -3.5 ± 0.5‰ for TCE degradation. Combining the values for both εC and εCl yielded mechanism-diagnostic εCl/εC ratios of 0.35 ± 0.11 and 0.37 ± 0.11 for the degradation of PCE and TCE, respectively. Application of the obtained εC and εCl values to a previously investigated field site gave similar estimates for the fraction of degraded contaminant as in the previous study, but with a reduced uncertainty in assessment of the natural attenuation. Furthermore, 16S rRNA gene clone library analyses were performed on three samples from the PCE degradation experiments. A species closely related to Desulfitobacterium aromaticivorans UKTL dominated the reductive dechlorination process. This study contributes to the development of 2D-CSIA as a tool for evaluating remediation strategies of CEs at contaminated sites.


Assuntos
Poluentes Atmosféricos/química , Biodegradação Ambiental , Isótopos de Carbono/química , Cloro/química , Monitoramento Ambiental/métodos , Isótopos/química , Tricloroetileno/química
12.
Environ Sci Technol ; 47(2): 790-7, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23210465

RESUMO

The widespread use of chlorinated phenols (CPs) as a wood preservative has led to numerous contaminated sawmill sites. However, it remains challenging to assess the extent of in situ degradation of CPs. We evaluated the use of compound-specific chlorine and carbon isotope analysis (Cl- and C-CSIA) to assess CP biotransformation. In a laboratory system, we measured isotopic fractionation during oxidative 2,4,6-trichlorophenol dechlorination by representative soil enzymes (C. fumago chloroperoxidase, horseradish peroxidase, and laccase from T. versicolor). Using a mathematical model, the validity of the Rayleigh approach to evaluate apparent kinetic isotope effects (AKIE) was confirmed. A small but significant Cl-AKIE of 1.0022 ± 0.0006 was observed for all three enzymes, consistent with a reaction pathway via a cationic radical species. For carbon, a slight inverse isotope effect was observed (C-AKIE = 0.9945 ± 0.0019). This fractionation behavior is clearly distinguishable from reported reductive dechlorination mechanisms. Based on these results we then assessed degradation and apportioned different types of technical CP mixtures used at two former sawmill sites. To our knowledge, this is the first study that makes use of two-element CSIA to study sources and transformation of CPs in the environment.


Assuntos
Clorofenóis/metabolismo , Monitoramento Ambiental/métodos , Poluentes Ambientais/metabolismo , Fungicidas Industriais/metabolismo , Armoracia/enzimologia , Ascomicetos/enzimologia , Basidiomycota/enzimologia , Biodegradação Ambiental , Isótopos de Carbono/isolamento & purificação , Isótopos de Carbono/metabolismo , Fracionamento Químico/métodos , Cloreto Peroxidase/metabolismo , Cloro/isolamento & purificação , Cloro/metabolismo , Halogenação , Peroxidase do Rábano Silvestre/metabolismo , Isótopos/isolamento & purificação , Isótopos/metabolismo , Lacase/metabolismo , Modelos Biológicos , Oxirredução
13.
Environ Sci Technol ; 46(20): 10918-25, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-22989309

RESUMO

Chlorinated ethenes (CEs) are ubiquitous groundwater contaminants, yet there remains a need for a method to efficiently monitor their in situ degradation. We report here the first field application of combined stable carbon and chlorine isotope analysis of tetrachloroethene (PCE) and trichloroethene (TCE) to investigate their biodegradation in a heavily contaminated aquifer. The two-dimensional Compound Specific Isotope Analysis (2D-CSIA) approach was facilitated by a recently developed gas chromatography-quadrupole mass spectrometry (GCqMS) method for δ(37)Cl determination. Both C and Cl isotopes showed evidence of ongoing PCE transformation. Applying published C isotope enrichment factors (ε(C)) enabled evaluation of the extent of in situ PCE degradation (11-78%). We interpreted C and Cl isotopes using a numerical reactive transport model along a 60-m flow path. It revealed that combined PCE and TCE mass load was dechlorinated by less than 10%, and that cis-dichloroethene was not further dechlorinated. Furthermore, the 2D-CSIA approach allowed estimation of Cl isotope enrichment factors ε(Cl) (-7.8 to -0.8‰) and characteristic ε(Cl)/ε(C) values (0.42-1.12) for reductive PCE dechlorination at this field site. This investigation demonstrates the benefit of 2D-CSIA to assess in situ degradation of CEs and the applicability of Cl isotope fractionation to evaluate PCE and TCE dechlorination.


Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea/química , Tetracloroetileno/análise , Tricloroetileno/análise , Poluentes Químicos da Água/análise , Isótopos de Carbono/análise , Cloro/análise , Halogenação , Purificação da Água
14.
Rapid Commun Mass Spectrom ; 25(17): 2425-32, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21818801

RESUMO

Methyl bromide is the most important natural bromine contributor to stratospheric ozone depletion, yet there are still large uncertainties regarding quantification of its sources and sinks. The stable bromine isotope composition of CH(3)Br is potentially a powerful tool to apportion its sources and to study both its transport and its reactive fate. A novel compound-specific method to measure (81)Br/(79)Br isotope ratios in CH(3)Br using gas chromatography hyphenated with inductively coupled plasma multiple-collector mass spectrometry (GC/MCICPMS) was developed. Sample amounts of >40 ng could be measured with a precision of 0.1‰ (1σ, n = 3). The method results are reproducible over the long term as shown with 36 analyses acquired over 3 months, yielding a standard deviation (1σ) better than 0.4‰. This new method demonstrates for the first time Br isotope ratio determination in gaseous brominated samples. It is three orders of magnitude more sensitive than previously existing isotope ratio mass spectrometry methods for Br isotope determination of other organobromines, thus allowing applications towards ambient atmospheric samples.

15.
Rapid Commun Mass Spectrom ; 24(14): 2135-42, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20552688

RESUMO

The bromine isotope composition is potentially diagnostic in both degradation monitoring and source apportionment of organobromines in the environment. A method for compound-specific bromine isotope analysis (delta(81)Br) based on gas chromatography multiple collector inductively coupled plasma mass spectrometry (GC/ICPMS) was developed for common brominated diaromatic compounds. Brominated diphenyl ethers (BDEs) in Bromkal 70-5DE, a technical flame-retardant mixture containing mainly BDEs #47, #99 and #100, were used as test substances, with standard bracketing for the samples achieved through co-injected monobromobenzene (MBB) with a known delta(81)Br of -0.39 per thousand vs. Standard Mean Ocean Bromine (SMOBr). Three different heated transfer lines were constructed and tested to achieve efficient conduction of the BDEs from the gas chromatograph to the ICPMS instrument. The MBB was analyzed with a precision of 0.4 per thousand (1 s, n = 18). The precision for BDEs was 1.4-1.8 per thousand (1 s, n = 10-12 depending on the congener). The lower precision for the BDEs than for MBB may reflect the heat required to prevent condensation of the analytes in ICP torch assembly. The use of an internal standard of similar chemical structure to the analytes alleviates this problem, as illustrated by a difference of 0.3 +/- 0.7 per thousand (1 s, n = 6) between the delta(81)Br values of co-injected methoxy BDE-47 and BDE-47 extracted from whale blubber. Improvements in precision and accuracy may be achieved by the use of a more efficient heating of the torch assembly in conjunction with a set of internal standards that match the target compounds.

16.
Anal Chem ; 82(1): 420-6, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20000586

RESUMO

A method has been developed for the direct determination of the stable chlorine isotope composition (delta(37)Cl) of organochlorines that eliminates sample preparation, achieves precision comparable to earlier techniques while improving the sensitivity, and makes use of benchtop gas chromatography-quadrupole mass spectrometry instruments (GCqMS). The method is based on the use of multiple injections (n = 8-10) of the sample, bracketed by a molecularly identical isotopic standard with known delta(37)Cl, determined using off-line thermal ionization mass spectrometry (TIMS). Mass traces of two isotopologues differing by one chlorine isotope were used to calculate delta(37)Cl values. Optimization of mass spectrometry and peak integration parameters as well as method validation was achieved using tetrachloroethene (PCE), p,p'-dichlorodiphenyltrichloroethane (DDT), and pentachlorophenol (PCP), spanning a delta(37)Cl range of -5.5 to +3.2 per thousand vs SMOC. Injecting 1.6-1100 pmol resulted in standard deviations (1sigma) of 0.6-1.3 per thousand, and the delta(37)Cl results agreed with values independently measured with TIMS. The method was tested by determining the Rayleigh fractionation during evaporation of pure liquid PCE, resulting in a chlorine isotopic enrichment factor of epsilon(Cl) = -1.1 +/- 0.4 per thousand. Furthermore, position-specific delta(37)Cl analysis based on analysis of DDT mass fragments was evaluated. The GCqMS-delta(37)Cl method offers a simplified yet sensitive approach for compound-specific chlorine isotope analysis.


Assuntos
Cloro/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos/química , Monitoramento Ambiental , Poluentes Ambientais/química , Isótopos , Sensibilidade e Especificidade
17.
Chemosphere ; 71(2): 299-305, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17937967

RESUMO

Compound-specific chlorine isotope analysis (CSIA-Cl) is promising as a novel and powerful method for monitoring in situ degradation of organochlorines in the environment and for source fingerprinting purposes. In order to apply CSIA-Cl in field studies of polychlorinated biphenyls (PCBs), the chlorine isotopic composition (delta(37)Cl) of individual PCB congeners in source materials must be known. In the present study, we determined delta(37)Cl of 18 congeners isolated from three widely produced technical mixtures. All congeners provided delta(37)Cl ranging between -1.9 per thousand and -3.5 per thousand. Although the comparable products Aroclor 1242 (-2.0 per thousand to -2.5 per thousand) and Clophen A30 (-1.9 per thousand to -3.0 per thousand) were synthesized by different industries, they provided similar delta(37)Cl for the same type of congeners. On the contrary, the more chlorinated congeners present in Aroclor 1254 (-2.1 to -3.5 per thousand) were more (37)Cl depleted compared to Aroclor 1242 manufactured by the same company. Overall, delta(37)Cl of PCB congeners decreased by -0.26 per thousand for each additional chlorine atom.


Assuntos
Arocloros/análise , Cloro/análise , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Isótopos/análise , Bifenilos Policlorados/análise , Arocloros/química , Cromatografia Gasosa , Bifenilos Policlorados/química
18.
Chemosphere ; 69(10): 1533-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17631944

RESUMO

Compound-specific chlorine-isotope analysis (CSIA-Cl) of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (p,p'-DDT) and 1,1-dichloro-2,2-bis(p-chlorophenyl)ethene (p,p'-DDE) in blubber from Baltic Grey seal (Halichoerus grypus) was performed in order to investigate if a kinetic isotope effect (KIE) could be observed concomitant to environmental degradation of DDT. The delta(37)Cl of p,p'-DDT and p,p'-DDE were -0.69 +/- 0.21 per thousand and -2.98 +/- 0.57 per thousand (1s igma, n = 3), respectively. Both samples were enriched relative to the hypothesized initial isotope composition (-4.34 per thousand), thus indicating a composite KIE associated with the degradation mechanisms pertaining to DDT. An isotope fractionation factor for degradation of dichloromethane, from the literature, was adapted and modified for use in the calculation of DDT degradation. A subsequent simplified Rayleigh distillation model of the DDT chlorine-isotope composition yielded an estimated fraction (f) of 7 +/- 2% of released DDT presently remaining as undegraded compound in the environment. The consistency between the result of the Rayleigh model (f approximately 7%) and the use of the DDT/(DDT + DDE) ratio as a measure of DDT degradation ( approximately 10% undegraded DDT) suggests that the KIE of DDT degradation may be significant, and that the novel approach of CSIA-Cl may be a valuable tool for degradation/persistence studies of lipophilic organochlorines in the environment.


Assuntos
Cloro , DDT/análise , Monitoramento Ambiental/métodos , Focas Verdadeiras/metabolismo , Poluentes Químicos da Água/análise , Tecido Adiposo/metabolismo , Animais , Biodegradação Ambiental , Cromatografia Gasosa , DDT/farmacocinética , Monitoramento Ambiental/instrumentação , Isótopos , Cinética , Espectrometria de Massas , Modelos Químicos , Poluentes Químicos da Água/farmacocinética
19.
Environ Sci Technol ; 40(12): 3730-5, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16830534

RESUMO

Polychlorinated dibenzo-p-dioxins (PCDDs) of high concentrations in a ball clay deposit from the Mississippi Embayment were found to be consistent with a natural abiotic and non-pyrogenic origin by investigation with bulk radiocarbon analysis, compound-specific chlorine isotope analysis (CSIA-delta37Cl) of octachlorodibenzo-p-dioxin (OCDD), and black carbon (BC) analysis. The conventional radiocarbon date of total organic carbon from a depth of approximately 10 m in three parallel cores ranged from 14 700 years to >48 000 years, indicating that the strata with elevated levels of PCDDs have remained isolated from recent anthropogenic input in these >40 Ma old clay sediments. The CSIA-delta37Cl of OCDD yielded a delta37Cl of -0.2 per thousandth, which is significantly higher than the postulated range for biotic chlorination by chloroperoxidase enzymes, -11 to -10 per thousandth, and falls within the known range for abiotic organochlorines, -6 to +3 per thousandth. The absence of correlations between concentrations of PCDDs and corresponding pyrogenic black carbon (BC), together with estimations of BC sorptive loadings and the absence of polychlorinated dibenzofurans (PCDFs), suggest that vegetation fires did not form these ball-clay PCDDs. Results from this study indicate that the high levels of the toxic and carcinogenic PCDDs found in kaolinite-bearing clays may result from natural abiotic formation via in situ surface-promoted reactions on the clay mineral, including a so-far unknown organic precursor, rather than being the result of anthropogenic contamination.


Assuntos
Silicatos de Alumínio/química , Radioisótopos de Carbono/análise , Cloro/análise , Isótopos/análise , Dibenzodioxinas Policloradas/análogos & derivados , Poluentes do Solo/análise , Radioisótopos de Carbono/metabolismo , Cloro/metabolismo , Argila , Isótopos/metabolismo , Kentucky , Dibenzodioxinas Policloradas/análise , Dibenzodioxinas Policloradas/química , Dibenzodioxinas Policloradas/metabolismo , Rios , Poluentes do Solo/metabolismo , Tennessee
20.
J Chromatogr A ; 1103(1): 133-8, 2006 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16309691

RESUMO

Chlorine isotope fractionation during preparative capillary gas chromatography (pcGC) was investigated using 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) as a model compound for semi-volatile organochlorine (OCl) molecules. Chlorine isotope analysis by thermal ionization mass spectrometry revealed no significant alteration of the chlorine isotope composition when the whole peaks were collected in pcGC (delta37Cl -3.2 per thousand versus -3.6 per thousand for the unprocessed DDT, +/-0.5 per thousand SD). However, distinct isotope fractionations were measured for the front (delta37Cl -5.1 per thousand) and tail (delta37Cl -1.8 per thousand) segments of partially collected samples. Isolation of individual OCls by pcGC enables accurate off-line chlorine isotope analysis, and thus facilitates the investigation of naturally occurring OCls.


Assuntos
Cloro/química , Cromatografia Gasosa/métodos , DDT/química , Cromatografia Gasosa/instrumentação , Isótopos/análise , Espectrometria de Massas/métodos , Reprodutibilidade dos Testes , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA