Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 11: 1348123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343448

RESUMO

African swine fever (ASF) causes significant morbidity and mortality in both domestic and wild suids (Sus scrofa), and disease outbreaks convey profound economic costs to impacted industries due to death loss, the cost of culling exposed/infected animals as the primary disease control measure, and trade restrictions. The co-occurrence of domestic and wild suids significantly complicates ASF management given the potential for wild populations to serve as persistent sources for spillover. We describe the unique threat of African swine fever virus (ASFV) introduction to the United States from epidemiological and ecological perspectives with a specific focus on disease management at the wild-domestic swine interface. The introduction of ASF into domestic herds would require a response focused on containment, culling, and contact tracing. However, detection of ASF among invasive wild pigs would require a far more complex and intensive response given the challenges of detection, containment, and ultimately elimination among wild populations. We describe the state of the science available to inform preparations for an ASF response among invasive wild pigs, describe knowledge gaps and the associated studies needed to fill those gaps, and call for an integrated approach for preparedness that incorporates the best available science and acknowledges sociological attributes and the policy context needed for an integrated disease response.

2.
Front Vet Sci ; 10: 1205485, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662981

RESUMO

Introduction: An incursion of foot-and-mouth disease (FMD) into the United States remains a concern of high importance and would have devastating socioeconomic impacts to the livestock and associated industries. This highly transmissible and infectious disease poses continual risk for introduction into the United States (US), due to the legal and illegal global movement of people, animals, and animal products. While stamping out has been shown to effectively control FMD, depopulation of large cattle feedlots (>50,000 head) presents a number of challenges for responders due to the resources required to depopulate and dispose of large numbers of animals in a timely and effective manner. Methods: However, evaluating alternative strategies for FMD control on large feedlots requires a detailed within-farm modeling approach, which can account for the unique structure of these operations. To address this, we developed a single feedlot, within-farm spread model using a novel configuration within the InterSpread Plus (ISP) framework. As proof of concept we designed six scenarios: (i) depopulation - the complete depopulation of the feedlot, (ii) burn-through - a managed "burn-through" where the virus is allowed to spread through the feedlot and only movement restriction and biosecurity are implemented, (iii) firebreak-NV - targeted depopulation of infected pens and adjacent pens without vaccination; (iv) firebreak - targeted depopulation of infected pens and adjacent pens with vaccination of remaining pens; (v) harvest-NV - selective harvest of pens where a 100% movement restriction is applied for 28-30 days, then pens are set for selection to be sent to slaughter, while allowing a controlled "burn-through" without vaccination; and (vi) harvest - selective harvest of pens with vaccination. Results: Overall, the burn-through scenario (ii) had the shortest epidemic duration (31d (30, 33)) median (25th, 75th percentiles), while the firebreak scenario (iv) had the longest (47d (38,55)). Additionally, we found that scenarios implementing depopulation delayed the peak day of infection and reduced the total number of pens infected compared to non-depopulation scenarios. Discussion: This novel configuration of ISP provides proof of concept for further development of this new tool to enhance response planning for an incursion of FMD in the US and provides the capability to investigate response strategies that are designed to address specific outbreak response objectives.

3.
Ecol Appl ; 30(1): e02015, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31596984

RESUMO

Functional responses describe how changing resource availability affects consumer resource use, thus providing a mechanistic approach to prediction of the invasibility and potential damage of invasive alien species (IAS). However, functional responses can be context dependent, varying with resource characteristics and availability, consumer attributes, and environmental variables. Identifying context dependencies can allow invasion and damage risk to be predicted across different ecoregions. Understanding how ecological factors shape the functional response in agro-ecosystems can improve predictions of hotspots of highest impact and inform strategies to mitigate damage across locations with varying crop types and availability. We linked heterogeneous movement data across different agro-ecosystems to predict ecologically driven variability in the functional responses. We applied our approach to wild pigs (Sus scrofa), one of the most successful and detrimental IAS worldwide where agricultural resource depredation is an important driver of spread and establishment. We used continental-scale movement data within agro-ecosystems to quantify the functional response of agricultural resources relative to availability of crops and natural forage. We hypothesized that wild pigs would selectively use crops more often when natural forage resources were low. We also examined how individual attributes such as sex, crop type, and resource stimulus such as distance to crops altered the magnitude of the functional response. There was a strong agricultural functional response where crop use was an accelerating function of crop availability at low density (Type III) and was highly context dependent. As hypothesized, there was a reduced response of crop use with increasing crop availability when non-agricultural resources were more available, emphasizing that crop damage levels are likely to be highly heterogeneous depending on surrounding natural resources and temporal availability of crops. We found significant effects of crop type and sex, with males spending 20% more time and visiting crops 58% more often than females, and both sexes showing different functional responses depending on crop type. Our application demonstrates how commonly collected animal movement data can be used to understand context dependencies in resource use to improve our understanding of pest foraging behavior, with implications for prioritizing spatiotemporal hotspots of potential economic loss in agro-ecosystems.


Assuntos
Produtos Agrícolas , Ecossistema , Agricultura , Animais , Feminino , Masculino , Movimento
4.
Front Vet Sci ; 6: 263, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31448297

RESUMO

The objective of the current study was to update parameterization of mathematical simulation models for foot-and-mouth disease (FMD) spread in cattle utilizing recent knowledge of FMD virus (FMDV) pathogenesis and infection dynamics to estimate the duration of distinct phases of FMD. Specifically, the durations of incubation, latent, and infectious periods were estimated for 3 serotypes (O, Asia1, and A) of FMDV, individually and collectively (pan-serotypic). Animal-level data were used in Accelerated Failure Time (AFT) models to estimate the duration of the defined phases of infection, while also investigating the influence of factors related to the experimental design (exposure methods) and virus serotype on disease progression. Substantial influences upon the estimated duration of distinct phases of FMD included the quantity of viral shedding used as a proxy for the onset of infectiousness, virus serotypes, and experimental exposure methods. The use of detection of any viral RNA in nasal secretions as a proxy of infectiousness lengthened the total infectious period compared to use of threshold-based detection. Additionally, the experimental system used to infect the animals also had significant effects on the duration of distinct phases of disease. Overall, the mean [95% Confidence Interval (CI)] durations of pan-serotype disease phases in cattle were estimated to be: incubation phase = 3.6 days (2.7-4.8), latent phase = 1.5 days (1.1-2.1), subclinical infectious phase = 2.2 days (1.5-3.5), clinical infectious phase = 8.5 days (6.2-11.6), and total infectious phase = 10.8 days (8.2-14.2). This study highlights the importance of identifying appropriate proxy measures to define the onset and duration of infectiousness in FMDV-infected cattle in the absence of actual transmission data. Additionally, it is demonstrated herein that factors associated with experimental design, such as virus exposure methods, may significantly affect disease progression in individual animals and should be considered when data is extrapolated from experimental studies. Given limitations in experimental data availability, pan-serotypic parameters which include all routes of exposure and a threshold-defined onset of infectiousness may be the most robust parameters for exploratory disease spread modeling approaches, when information on the specific virus of interest is not available.

5.
Front Public Health ; 3: 74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25973416

RESUMO

Reducing the burden of emerging and endemic infectious diseases on commercial livestock production systems will require the development of innovative technology platforms that enable information from diverse animal health resources to be collected, analyzed, and communicated in near real-time. In this paper, we review recent initiatives to leverage data routinely observed by farmers, production managers, veterinary practitioners, diagnostic laboratories, regulatory officials, and slaughterhouse inspectors for disease surveillance purposes. The most commonly identified challenges were (1) the lack of standardized systems for recording essential data elements within and between surveillance data streams, (2) the additional time required to collect data elements that are not routinely recorded by participants, (3) the concern over the sharing and use of business sensitive information with regulatory authorities and other data analysts, (4) the difficulty in developing sustainable incentives to maintain long-term program participation, and (5) the limitations in current methods for analyzing and reporting animal health information in a manner that facilitates actionable response. With the significant recent advances in information science, there are many opportunities to develop more sophisticated systems that meet national disease surveillance objectives, while still providing participants with valuable tools and feedback to manage routine animal health concerns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA