Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 212(9): 1450-1456, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488511

RESUMO

Human parainfluenza virus 3 (HPIV3) is a widespread pathogen causing severe and lethal respiratory illness in at-risk populations. Effective countermeasures are in various stages of development; however, licensed therapeutic and prophylactic options are not available. The fusion glycoprotein (HPIV3 F), responsible for facilitating viral entry into host cells, is a major target of neutralizing Abs that inhibit infection. Although several neutralizing Abs against a small number of HPIV3 F epitopes have been identified to date, relatively little is known about the Ab response to HPIV3 compared with other pathogens, such as influenza virus and SARS-CoV-2. In this study, we aimed to characterize a set of HPIV3-specific Abs identified in multiple individuals for genetic signatures, epitope specificity, neutralization potential, and publicness. We identified 12 potently neutralizing Abs targeting three nonoverlapping epitopes on HPIV3 F. Among these, six Abs identified from two different individuals used Ig heavy variable gene IGHV 5-51, with five of the six Abs targeting the same epitope. However, despite the use of the same H chain variable (VH) gene, these Abs used multiple different L chain variable genes (VL) and diverse H chain CDR 3 (CDRH3) sequences. Together, these results provide further information about the genetic and functional characteristics of HPIV3-neutralizing Abs and suggest the existence of a reproducible VH-dependent Ab response associated with VL and CDRH3 promiscuity. Understanding sites of HPIV3 F vulnerability and the genetic and molecular characteristics of Abs targeting these sites will help guide efforts for effective vaccine and therapeutic development.


Assuntos
Anticorpos Neutralizantes , Vírus da Parainfluenza 3 Humana , Humanos , Proteínas Virais de Fusão/genética , Epitopos , Anticorpos Antivirais
2.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293237

RESUMO

Three coronaviruses have spilled over from animal reservoirs into the human population and caused deadly epidemics or pandemics. The continued emergence of coronaviruses highlights the need for pan-coronavirus interventions for effective pandemic preparedness. Here, using LIBRA-seq, we report a panel of 50 coronavirus antibodies isolated from human B cells. Of these antibodies, 54043-5 was shown to bind the S2 subunit of spike proteins from alpha-, beta-, and deltacoronaviruses. A cryo-EM structure of 54043-5 bound to the pre-fusion S2 subunit of the SARS-CoV-2 spike defined an epitope at the apex of S2 that is highly conserved among betacoronaviruses. Although non-neutralizing, 54043-5 induced Fc-dependent antiviral responses, including ADCC and ADCP. In murine SARS-CoV-2 challenge studies, protection against disease was observed after introduction of Leu234Ala, Leu235Ala, and Pro329Gly (LALA-PG) substitutions in the Fc region of 54043-5. Together, these data provide new insights into the protective mechanisms of non-neutralizing antibodies and define a broadly conserved epitope within the S2 subunit.

3.
Cell Rep Med ; 4(11): 101267, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37935199

RESUMO

From the beginning of the COVID-19 pandemic, children have exhibited different susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, reinfection, and disease compared with adults. Motivated by the established significance of SARS-CoV-2-neutralizing antibodies in adults, here we characterize SARS-CoV-2-specific antibody repertoires in a young cohort of individuals aged from 5 months to 18 years old. Our results show that neutralizing antibodies in children possess similar genetic features compared to antibodies identified in adults, with multiple antibodies from children belonging to previously established public antibody clonotypes in adults. Notably, antibodies from children show potent neutralization of circulating SARS-CoV-2 variants that have cumulatively resulted in resistance to virtually all approved monoclonal antibody therapeutics. Our results show that children can rely on similar SARS-CoV-2 antibody neutralization mechanisms compared to adults and are an underutilized source for the discovery of effective antibody therapeutics to counteract the ever-evolving pandemic.


Assuntos
COVID-19 , Pandemias , Humanos , Adulto , Criança , SARS-CoV-2/genética , Anticorpos Antivirais , Anticorpos Neutralizantes/uso terapêutico
4.
Cell Rep ; 37(1): 109784, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34592170

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages that are more transmissible and resistant to currently approved antibody therapies poses a considerable challenge to the clinical treatment of coronavirus disease (COVID-19). Therefore, the need for ongoing discovery efforts to identify broadly reactive monoclonal antibodies to SARS-CoV-2 is of utmost importance. Here, we report a panel of SARS-CoV-2 antibodies isolated using the linking B cell receptor to antigen specificity through sequencing (LIBRA-seq) technology from an individual who recovered from COVID-19. Of these antibodies, 54042-4 shows potent neutralization against authentic SARS-CoV-2 viruses, including variants of concern (VOCs). A cryoelectron microscopy (cryo-EM) structure of 54042-4 in complex with the SARS-CoV-2 spike reveals an epitope composed of residues that are highly conserved in currently circulating SARS-CoV-2 lineages. Further, 54042-4 possesses uncommon genetic and structural characteristics that distinguish it from other potently neutralizing SARS-CoV-2 antibodies. Together, these findings provide motivation for the development of 54042-4 as a lead candidate to counteract current and future SARS-CoV-2 VOCs.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , SARS-CoV-2/química , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/química , Animais , Anticorpos Antivirais/imunologia , Formação de Anticorpos , COVID-19/genética , COVID-19/virologia , Linhagem Celular , Chlorocebus aethiops , Microscopia Crioeletrônica , Mapeamento de Epitopos/métodos , Epitopos/química , Epitopos/imunologia , Ensaios de Triagem em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores de Antígenos de Linfócitos B/química , Receptores de Antígenos de Linfócitos B/imunologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Células Vero
5.
Cell Rep Med ; 2(6): 100313, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34056628

RESUMO

The continual emergence of novel coronaviruses (CoV), such as severe acute respiratory syndrome-(SARS)-CoV-2, highlights the critical need for broadly reactive therapeutics and vaccines against this family of viruses. From a recovered SARS-CoV donor sample, we identify and characterize a panel of six monoclonal antibodies that cross-react with CoV spike (S) proteins from the highly pathogenic SARS-CoV and SARS-CoV-2, and demonstrate a spectrum of reactivity against other CoVs. Epitope mapping reveals that these antibodies recognize multiple epitopes on SARS-CoV-2 S, including the receptor-binding domain, the N-terminal domain, and the S2 subunit. Functional characterization demonstrates that the antibodies mediate phagocytosis-and in some cases trogocytosis-but not neutralization in vitro. When tested in vivo in murine models, two of the antibodies demonstrate a reduction in hemorrhagic pathology in the lungs. The identification of cross-reactive epitopes recognized by functional antibodies expands the repertoire of targets for pan-coronavirus vaccine design strategies.


Assuntos
Anticorpos Monoclonais/imunologia , Epitopos/imunologia , Fragmentos Fc das Imunoglobulinas/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Reações Antígeno-Anticorpo , Linfócitos B/citologia , Linfócitos B/metabolismo , COVID-19/patologia , COVID-19/virologia , Linhagem Celular , Reações Cruzadas/imunologia , Mapeamento de Epitopos , Feminino , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose , Subunidades Proteicas/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
6.
bioRxiv ; 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33398266

RESUMO

The continual emergence of novel coronavirus (CoV) strains, like SARS-CoV-2, highlights the critical need for broadly reactive therapeutics and vaccines against this family of viruses. Coronavirus spike (S) proteins share common structural motifs that could be vulnerable to cross-reactive antibody responses. To study this phenomenon in human coronavirus infection, we applied a high-throughput sequencing method called LIBRA-seq (Linking B cell receptor to antigen specificity through sequencing) to a SARS-CoV-1 convalescent donor sample. We identified and characterized a panel of six monoclonal antibodies that cross-reacted with S proteins from the highly pathogenic SARS-CoV-1 and SARS-CoV-2 and demonstrated a spectrum of reactivity against other coronaviruses. Epitope mapping revealed that these antibodies recognized multiple epitopes on SARS-CoV-2 S, including the receptor binding domain (RBD), N-terminal domain (NTD), and S2 subunit. Functional characterization demonstrated that the antibodies mediated a variety of Fc effector functions in vitro and mitigated pathological burden in vivo . The identification of cross-reactive epitopes recognized by functional antibodies expands the repertoire of targets for pan-coronavirus vaccine design strategies that may be useful for preventing potential future coronavirus outbreaks.

7.
Precis Nanomed ; 1(3): 194-207, 2018 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31773101

RESUMO

The Thomsen-Friedenreich (TF) antigen is a tumor-associated antigen consistently expressed on the apical surface of epithelial-based cancer cells, including pancreatic cancer. In this work, we report the development of multimodal imaging probe, the tripolymer fluorescent nanospheres, whose surface was fabricated with peanut agglutinin (PNA) moieties as TF molecular recognition molecules. Here, we demonstrate that the probe is able to detect TF antigen in human pancreatic cancer tissues and differentiate from normal tissue. What is most noteworthy regarding the probe is its ability to visualize tumor margins defined by epithelial TF antigen expression. Further, in vivo preclinical studies using an orthotopic mouse model of pancreatic cancer suggest the potential use of the nanospheres for laparoscopic imaging of pancreatic cancer tumor margins to enhance surgical resection and improve clinical outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA