Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 64(21): 15651-15670, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34699203

RESUMO

A series of diarylurea inhibitors of the cardiac-specific kinase TNNI3K were developed to elucidate the biological function of TNNI3K and evaluate TNNI3K as a therapeutic target for the treatment of cardiovascular diseases. Utilizing a structure-based design, enhancements in kinase selectivity were engineered into the series, capitalizing on the established X-ray crystal structures of TNNI3K, VEGFR2, p38α, and B-Raf. Our efforts culminated in the discovery of an in vivo tool compound 47 (GSK329), which exhibited desirable TNNI3K potency and rat pharmacokinetic properties as well as promising kinase selectivity against VEGFR2 (40-fold), p38α (80-fold), and B-Raf (>200-fold). Compound 47 demonstrated positive cardioprotective outcomes in a mouse model of ischemia/reperfusion cardiac injury, indicating that optimized exemplars from this series, such as 47, are favorable leads for discovering novel medicines for cardiac diseases.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Ureia/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Desenho de Fármacos , Humanos , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Relação Estrutura-Atividade , Ureia/análogos & derivados , Ureia/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
2.
ACS Med Chem Lett ; 12(9): 1498-1502, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34531959

RESUMO

GSK2798745, an antagonist of the transient receptor potential vanilloid 4 (TRPV4) ion channel, was recently investigated in clinical trials for the treatment of cardiac and respiratory diseases. Human plasma and urine samples collected from healthy volunteers following oral administration were analyzed to identify circulating and excreted metabolites of the parent drug. One major circulating metabolite (1) was found in pooled human plasma samples, accounting for approximately half of the observed drug-related material. Isolation of metabolite 1 from urine samples followed by MS and NMR studies led to a putative structural assignment of 1 where hydroxylation of GSK2798745 occurred on the central ring, producing a penta-substituted cyclohexane structure containing three stereocenters. Two unique chemical syntheses of the proposed structure were developed to confirm the identity of metabolite 1 and provide access to gram quantities for biological characterization.

3.
Bioconjug Chem ; 32(2): 279-289, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33523652

RESUMO

Reducing the required frequence of drug dosing can improve the adherence of patients to chronic treatments. Hence, drugs with longer in vivo half-lives are highly desirable. One of the most promising approaches to extend the in vivo half-life of drugs is conjugation to human serum albumin (HSA). In this work, we describe the use of AlbuBinder 1, a small-molecule noncovalent HSA binder, to extend the in vivo half-life and pharmacology of small-molecule BMP1/TLL inhibitors in humanized mice (HSA KI/KI). A series of conjugates of AlbuBinder 1 with BMP1/TLL inhibitors were prepared. In particular, conjugate c showed good solubility and a half-life extension of >20-fold versus the parent molecule in the HSA KI/KI mice, reaching half-lives of >48 h with maintained maximal inhibition of plasma BMP1/TLL. The same conjugate showed a half-life of only 3 h in the wild-type mice, suggesting that the half-life extension was principally due to specific interactions with HSA. It is envisioned that conjugation to AlbuBinder 1 should be applicable to a wide range of small molecule or peptide drugs with short half-lives. In this context, AlbuBinders represent a viable alternative to existing half-life extension technologies.


Assuntos
Metaloproteases/metabolismo , Inibidores de Proteases/farmacologia , Albumina Sérica Humana/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Animais , Proteína Morfogenética Óssea 1/metabolismo , Meia-Vida , Humanos , Camundongos , Estudo de Prova de Conceito , Inibidores de Proteases/farmacocinética
4.
J Med Chem ; 63(23): 14867-14884, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33201708

RESUMO

Investigation of TRPV4 as a potential target for the treatment of pulmonary edema associated with heart failure generated a novel series of acyclic amine inhibitors displaying exceptional potency and PK properties. The series arose through a scaffold hopping approach, which relied on use of an internal H-bond to replace a saturated heterocyclic ring. Optimization of the lead through investigation of both aryl regions revealed approaches to increase potency through substituents believed to enhance separate intramolecular and intermolecular H-bond interactions. A proposed internal H-bond between the amine and neighboring benzenesulfonamide was stabilized by electronically modulating the benzenesulfonamide. In the aryl ether moiety, substituents para to the nitrile demonstrated an electronic effect on TRPV4 recognition. Finally, the acyclic amines inactivated CYP3A4 and this liability was addressed by modifications that sterically preclude formation of a putative metabolic intermediate complex to deliver advanced TRPV4 antagonists as leads for discovery of novel medicines.


Assuntos
Diaminas/química , Sulfonamidas/química , Canais de Cátion TRPV/antagonistas & inibidores , Animais , Citocromo P-450 CYP3A/metabolismo , Diaminas/síntese química , Diaminas/metabolismo , Diaminas/farmacocinética , Desenho de Fármacos , Humanos , Ligação de Hidrogênio/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ligação Proteica , Ratos , Estereoisomerismo , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/metabolismo , Sulfonamidas/farmacocinética , Canais de Cátion TRPV/química , Canais de Cátion TRPV/metabolismo
5.
J Med Chem ; 62(20): 9270-9280, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31532662

RESUMO

GSK3527497, a preclinical candidate for the inhibition of TRPV4, was identified starting from the previously reported pyrrolidine sulfonamide TRPV4 inhibitors 1 and 2. Optimization of projected human dose was accomplished by specifically focusing on in vivo pharmacokinetic parameters CLu, Vdssu, and MRT. We highlight the use of conformational changes as a novel approach to modulate Vdssu and present results that suggest that molecular-shape-dependent binding to tissue components governs Vdssu in addition to bulk physicochemical properties. Optimization of CLu within the series was guided by in vitro metabolite identification, and the poor FaSSIF solubility imparted by the crystalline properties of the pyrrolidine diol scaffold was improved by the introduction of a charged moiety to enable excellent exposure from high crystalline doses. GSK3527497 is a preclinical candidate suitable for oral and iv administration that is projected to inhibit TRPV4 effectively in patients from a low daily clinical dose.


Assuntos
Pirrolidinas/química , Sulfonamidas/química , Canais de Cátion TRPV/antagonistas & inibidores , Administração Oral , Animais , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Humanos , Concentração Inibidora 50 , Pirrolidinas/metabolismo , Ratos , Ratos Sprague-Dawley , Solubilidade , Relação Estrutura-Atividade , Sulfonamidas/metabolismo , Canais de Cátion TRPV/metabolismo
6.
ACS Med Chem Lett ; 10(8): 1228-1233, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31413810

RESUMO

GSK2798745, a clinical candidate, was identified as an inhibitor of the transient receptor potential vanilloid 4 (TRPV4) ion channel for the treatment of pulmonary edema associated with congestive heart failure. We discuss the lead optimization of this novel spirocarbamate series and specifically focus on our strategies and solutions for achieving desirable potency, rat pharmacokinetics, and physicochemical properties. We highlight the use of conformational bias to deliver potency and optimization of volume of distribution and unbound clearance to enable desirable in vivo mean residence times.

7.
J Med Chem ; 61(24): 11209-11220, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30500190

RESUMO

Pulmonary edema is a common ailment of heart failure patients and has remained an unmet medical need due to dose-limiting side effects associated with current treatments. Preclinical studies in rodents have suggested that inhibition of transient receptor potential vanilloid-4 (TRPV4) cation channels may offer an alternative-and potentially superior-therapy. Efforts directed toward small-molecule antagonists of the TRPV4 receptor have led to the discovery of a novel sulfone pyrrolidine sulfonamide chemotype exemplified by lead compound 6. Design elements toward the optimization of TRPV4 activity, selectivity, and pharmacokinetic properties are described. Activity of leading exemplars 19 and 27 in an in vivo model suggestive of therapeutic potential is highlighted herein.


Assuntos
Edema Pulmonar/tratamento farmacológico , Pirrolidinas/farmacologia , Sulfonamidas/farmacologia , Sulfonas/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Animais , Avaliação Pré-Clínica de Medicamentos , Humanos , Masculino , Pirrolidinas/química , Pirrolidinas/farmacocinética , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/farmacocinética , Sulfonas/química , Sulfonas/farmacocinética
8.
J Med Chem ; 61(21): 9738-9755, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30335378

RESUMO

A novel series of pyrrolidine sulfonamide transient receptor potential vanilloid-4 (TRPV4) antagonists was developed by modification of a previously reported TRPV4 inhibitor (1). Several core-structure modifications were identified that improved TRPV4 activity by increasing structural rigidity and reducing the entropic energy penalty upon binding to the target protein. The new template was initially discovered as a minor regio-isomeric side product formed during routine structure-activity relationship (SAR) studies, and further optimization resulted in highly potent compounds with a novel pyrrolidine diol core. Further improvements in potency and pharmacokinetic properties were achieved through SAR studies on the sulfonamide substituent to give an optimized lead compound GSK3395879 (52) that demonstrated the ability to inhibit TRPV4-mediated pulmonary edema in an in vivo rat model. GSK3395879 is a tool for studying the biology of TRPV4 and an advanced lead for identifying new heart failure medicines.


Assuntos
Desenho de Fármacos , Pirrolidinas/química , Sulfonamidas/química , Sulfonamidas/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Administração Oral , Animais , Disponibilidade Biológica , Ratos , Relação Estrutura-Atividade , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacocinética
9.
Science ; 362(6411): 233-236, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30166437

RESUMO

Nitrogen-fixing root nodules on legumes result from two developmental processes, bacterial infection and nodule organogenesis. To balance symbiosis and plant growth, legume hosts restrict nodule numbers through an inducible autoregulatory process. Here, we present a mechanism where repression of a negative regulator ensures symbiotic susceptibility of uninfected roots of the host Lotus japonicus We show that microRNA miR2111 undergoes shoot-to-root translocation to control rhizobial infection through posttranscriptional regulation of the symbiosis suppressor TOO MUCH LOVE in roots. miR2111 maintains a susceptible default status in uninfected hosts and functions as an activator of symbiosis downstream of LOTUS HISTIDINE KINASE1-mediated cytokinin perception in roots and HYPERNODULATION ABERRANT ROOT FORMATION1, a shoot factor in autoregulation. The miR2111-TML node ensures activation of feedback regulation to balance infection and nodulation events.


Assuntos
Lotus/microbiologia , MicroRNAs/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Rhizobium/patogenicidade , Nódulos Radiculares de Plantas/microbiologia , Regulação Bacteriana da Expressão Gênica , Rhizobium/genética , Simbiose/genética
10.
ACS Med Chem Lett ; 9(7): 736-740, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30034610

RESUMO

Bone Morphogenetic Protein 1 (BMP1) inhibition is a potential method for treating fibrosis because BMP1, a member of the zinc metalloprotease family, is required to convert pro-collagen to collagen. A novel class of reverse hydroxamate BMP1 inhibitors was discovered, and cocrystal structures with BMP1 were obtained. The observed binding mode is unique in that the small molecule occupies the nonprime side of the metalloprotease pocket providing an opportunity to build in metalloprotease selectivity. Structure-guided modification of the initial hit led to the identification of an oral in vivo tool compound with selectivity over other metalloproteases. Due to irreversible inhibition of cytochrome P450 3A4 for this chemical class, the risk of potential drug-drug interactions was managed by optimizing the series for subcutaneous injection.

11.
J Med Chem ; 61(7): 3076-3088, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29561151

RESUMO

Structure-guided progression of a purine-derived series of TNNI3K inhibitors directed design efforts that produced a novel series of 4,6-diaminopyrimidine inhibitors, an emerging kinase binding motif. Herein, we report a detailed understanding of the intrinsic conformational preferences of the scaffold, which impart high specificity for TNNI3K. Further manipulation of the template based on the conformational analysis and additional structure-activity relationship studies provided enhancements in kinase selectivity and pharmacokinetics that furnished an advanced series of potent inhibitors. The optimized compounds (e.g., GSK854) are suitable leads for identifying new cardiac medicines and have been employed as in vivo tools in investigational studies aimed at defining the role of TNNI3K within heart failure.


Assuntos
Cardiotônicos/síntese química , Cardiotônicos/farmacologia , MAP Quinase Quinase Quinases/antagonistas & inibidores , Pirimidinas/síntese química , Pirimidinas/farmacologia , Animais , Disponibilidade Biológica , Cardiotônicos/farmacocinética , Biologia Computacional , Desenho de Fármacos , Receptores ErbB/efeitos dos fármacos , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Modelos Moleculares , Conformação Molecular , Proteínas Serina-Treonina Quinases , Pirimidinas/farmacocinética , Ratos , Relação Estrutura-Atividade
14.
Environ Res ; 156: 845-853, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28499499

RESUMO

BACKGROUND: Heat-related morbidity and mortality is a recognized public health concern. However, public health officials need to base policy decisions on local evidence, which is often lacking for smaller communities. OBJECTIVES: To evaluate the association between maximum daily heat index (HI) and morbidity and mortality in 15 New England communities (combined population: 2.7 million) in order to provide actionable evidence for local officials. METHODS: We applied overdispersed Poisson nonlinear distributed lag models to evaluate the association between HI and daily (May-September) emergency department (ED) admissions and deaths in each of 15 study sites in New Hampshire, Maine, and Rhode Island, controlling for time trends, day of week, and federal holidays. Site-specific estimates were meta-analyzed to provide regional estimates. RESULTS: Associations (sometimes non-linear) were observed between HI and each health outcome. For example, a day with a HI of 95°F vs. 75°F was associated with a cumulative 7.5% (95% confidence interval [CI]: 6.5%, 8.5%) and 5.1% (95% CI: 0.2%, 10.3%) higher rate of all-cause ED visits and deaths, respectively, with some evidence of regional heterogeneity. We estimate that in the study area, days with a HI≥95°F were associated with an annual average of 784 (95% CI: 658, 908) excess ED visits and 22 (95% CI: 3, 39) excess deaths. CONCLUSIONS: Our results suggest the presence of adverse health impacts associated with HI below the current local guideline criteria of HI≥100°F used to issue heat advisories. We hypothesize that lowering this threshold may lead to substantially reduced heat-related morbidity and mortality in the study area.


Assuntos
Serviço Hospitalar de Emergência/estatística & dados numéricos , Temperatura Alta/efeitos adversos , Mortalidade , Idoso , Feminino , Humanos , Umidade , Masculino , Morbidade , New England , Política Pública
15.
ACS Med Chem Lett ; 8(5): 549-554, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28523109

RESUMO

Transient Receptor Potential Vanilloid 4 (TRPV4) is a member of the Transient Receptor Potential (TRP) superfamily of cation channels. TRPV4 is expressed in the vascular endothelium in the lung and regulates the integrity of the alveolar septal barrier. Increased pulmonary vascular pressure evokes TRPV4-dependent pulmonary edema, and therefore, inhibition of TRPV4 represents a novel approach for the treatment of pulmonary edema associated with conditions such as congestive heart failure. Herein we report the discovery of an orally active, potent, and selective TRPV4 blocker, 3-(1,4'-bipiperidin-1'-ylmethyl)-7-bromo-N-(1-phenylcyclopropyl)-2-[3-(trifluoromethyl)phenyl]-4-quinolinecarboxamide (GSK2193874, 28) after addressing an unexpected off-target cardiovascular liability observed from in vivo studies. GSK2193874 is a selective tool for elucidating TRPV4 biology both in vitro and in vivo.

16.
J Med Chem ; 59(23): 10629-10641, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27933961

RESUMO

Investigation of troponin I-interacting kinase (TNNI3K) as a potential target for the treatment of heart failure has produced a series of substituted N-methyl-3-(pyrimidin-4-ylamino)benzenesulfonamide inhibitors that display excellent potency and selectivity against a broad spectrum of protein kinases. Crystal structures of prototypical members bound to the ATP-binding site of TNNI3K reveal two anchoring hydrogen bond contacts: (1) from the hinge region amide N-H to the pyrimidine nitrogen and (2) from the sulfonamide N-H to the gatekeeper threonine. Evaluation of various para-substituted benzenesulfonamides defined a substituent effect on binding affinity resulting from modulation of the sulfonamide H-bond donor strength. An opposite electronic effect emerged for the hinge NH-pyrimidine H-bond interaction, which is further illuminated in the correlation of calculated H-bond acceptor strength and TNNI3K affinity for a variety of hinge binding heterocycles. These fundamental correlations on drug-receptor H-bond interactions may be generally useful tools for the optimization of potency and selectivity in the design of kinase inhibitors.


Assuntos
Desenho de Fármacos , MAP Quinase Quinase Quinases/química , Inibidores de Proteínas Quinases/química , Relação Dose-Resposta a Droga , Humanos , Ligação de Hidrogênio , MAP Quinase Quinase Quinases/antagonistas & inibidores , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases , Relação Estrutura-Atividade
17.
Bioorg Med Chem Lett ; 26(14): 3355-3358, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27246618

RESUMO

A series of selective TNNI3K inhibitors were developed by modifying the hinge-binding heterocycle of a previously reported dual TNNI3K/B-Raf inhibitor. The resulting quinazoline-containing compounds exhibit a large preference (up to 250-fold) for binding to TNNI3K versus B-Raf, are useful probes for elucidating the biological pathways associated with TNNI3K, and are leads for discovering novel cardiac medicines. GSK114 emerged as a leading inhibitor, displaying significant bias (40-fold) for TNNI3K over B-Raf, exceptional broad spectrum kinase selectivity, and adequate oral exposure to enable its use in cellular and in vivo studies.


Assuntos
MAP Quinase Quinase Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Sulfonamidas/farmacologia , Relação Dose-Resposta a Droga , Humanos , MAP Quinase Quinase Quinases/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
18.
J Med Chem ; 58(18): 7431-48, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26355916

RESUMO

A series of cardiac troponin I-interacting kinase (TNNI3K) inhibitors arising from 3-((9H-purin-6-yl)amino)-N-methyl-benzenesulfonamide (1) is disclosed along with fundamental structure-function relationships that delineate the role of each element of 1 for TNNI3K recognition. An X-ray structure of 1 bound to TNNI3K confirmed its Type I binding mode and is used to rationalize the structure-activity relationship and employed to design potent, selective, and orally bioavailable TNNI3K inhibitors. Identification of the 7-deazapurine heterocycle as a superior template (vs purine) and its elaboration by introduction of C4-benzenesulfonamide and C7- and C8-7-deazapurine substituents produced compounds with substantial improvements in potency (>1000-fold), general kinase selectivity (10-fold improvement), and pharmacokinetic properties (>10-fold increase in poDNAUC). Optimal members of the series have properties suitable for use in in vitro and in vivo experiments aimed at elucidating the role of TNNI3K in cardiac biology and serve as leads for developing novel heart failure medicines.


Assuntos
MAP Quinase Quinase Quinases/antagonistas & inibidores , Purinas/química , Administração Oral , Animais , Linhagem Celular , Cristalografia por Raios X , Humanos , Masculino , Ligação Proteica , Conformação Proteica , Proteínas Serina-Treonina Quinases , Purinas/farmacocinética , Purinas/farmacologia , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologia
19.
New Phytol ; 208(1): 241-56, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25967282

RESUMO

Legumes interact with rhizobial bacteria to form nitrogen-fixing root nodules. Host signalling following mutual recognition ensures a specific response, but is only partially understood. Focusing on the stage of epidermal infection with Mesorhizobium loti, we analysed endogenous small RNAs (sRNAs) of the model legume Lotus japonicus to investigate their involvement in host response regulation. We used Illumina sequencing to annotate the L. japonicus sRNA-ome and isolate infection-responsive sRNAs, followed by candidate-based functional characterization. Sequences from four libraries revealed 219 novel L. japonicus micro RNAs (miRNAs) from 114 newly assigned families, and 76 infection-responsive sRNAs. Unlike infection-associated coding genes such as NODULE INCEPTION (NIN), a micro RNA 172 (miR172) isoform showed strong accumulation in dependency of both Nodulation (Nod) factor and compatible rhizobia. The genetics of miR172 induction support the existence of distinct epidermal and cortical signalling events. MIR172a promoter activity followed a previously unseen pattern preceding infection thread progression in epidermal and cortical cells. Nodule-associated miR172a expression was infection-independent, representing the second of two genetically separable activity waves. The combined data provide a valuable resource for further study, and identify miR172 as an sRNA marking successful epidermal infection. We show that miR172 acts upstream of several APETALA2-type (AP2) transcription factors, and suggest that it has a role in fine-tuning AP2 levels during bacterial symbiosis.


Assuntos
Regulação da Expressão Gênica de Plantas , Lotus/genética , Mesorhizobium/crescimento & desenvolvimento , MicroRNAs/metabolismo , Epiderme Vegetal/microbiologia , Nódulos Radiculares de Plantas/microbiologia , Simbiose , Endófitos/crescimento & desenvolvimento , Genes de Plantas , Lotus/metabolismo , Lotus/microbiologia , Fenótipo , Epiderme Vegetal/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Regiões Promotoras Genéticas , Rhizobium , Transdução de Sinais , Fatores de Transcrição/metabolismo
20.
Bioorg Med Chem Lett ; 23(17): 4979-84, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23886683

RESUMO

Lead optimization of piperidine amide HTS hits, based on an anilino-thiazole core, led to the identification of analogs which displayed low nanomolar blocking activity at the canonical transient receptor channels 3 and 6 (TRPC3 & 6) based on FLIPR (carbachol stimulated) and electrophysiology (OAG stimulated) assays. In addition, the anilino-thiazole amides displayed good selectivity over other TRP channels (TRPA1, TRPV1, and TRPV4), as well as against cardiac ion channels (CaV1.2, hERG, and NaV1.5). The high oxidation potential of the aliphatic piperidine and aniline groups, as well as the lability of the thiazole amide group contributed to the high clearance observed for this class of compounds. Conversion of an isoquinoline amide to a naphthyridine amide markedly reduced clearance for the bicyclic piperidines, and improved oral bioavailability for this compound series, however TRPC3 and TRPC6 blocking activity was reduced substantially. Although the most potent anilino-thiazole amides ultimately lacked oral exposure in rodents and were not suitable for chronic dosing, analogs such as 14-19, 22, and 23 are potentially valuable in vitro tool compounds for investigating the role of TRPC3 and TRPC6 in cardiovascular disease.


Assuntos
Compostos de Anilina/química , Compostos de Anilina/farmacologia , Canais de Cátion TRPC/antagonistas & inibidores , Tiazóis/química , Tiazóis/farmacologia , Diglicerídeos/metabolismo , Descoberta de Drogas , Células HEK293 , Humanos , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA