Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 103, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702750

RESUMO

BACKGROUND: Ascetosporea (Endomyxa, Rhizaria) is a group of unicellular parasites infecting aquatic invertebrates. They are increasingly being recognized as widespread and important in marine environments, causing large annual losses in invertebrate aquaculture. Despite their importance, little molecular data of Ascetosporea exist, with only two genome assemblies published to date. Accordingly, the evolutionary origin of these parasites is unclear, including their phylogenetic position and the genomic adaptations that accompanied the transition from a free-living lifestyle to parasitism. Here, we sequenced and assembled three new ascetosporean genomes, as well as the genome of a closely related amphizoic species, to investigate the phylogeny, origin, and genomic adaptations to parasitism in Ascetosporea. RESULTS: Using a phylogenomic approach, we confirm the monophyly of Ascetosporea and show that Paramyxida group with Mikrocytida, with Haplosporida being sister to both groups. We report that the genomes of these parasites are relatively small (12-36 Mb) and gene-sparse (~ 2300-5200 genes), while containing surprisingly high amounts of non-coding sequence (~ 70-90% of the genomes). Performing gene-tree aware ancestral reconstruction of gene families, we demonstrate extensive gene losses at the origin of parasitism in Ascetosporea, primarily of metabolic functions, and little gene gain except on terminal branches. Finally, we highlight some functional gene classes that have undergone expansions during evolution of the group. CONCLUSIONS: We present important new genomic information from a lineage of enigmatic but important parasites of invertebrates and illuminate some of the genomic innovations accompanying the evolutionary transition to parasitism in this lineage. Our results and data provide a genetic basis for the development of control measures against these parasites.


Assuntos
Genômica , Filogenia , Rhizaria , Animais , Rhizaria/genética , Evolução Biológica , Genoma , Evolução Molecular
2.
Front Cell Infect Microbiol ; 14: 1369615, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803570

RESUMO

Introduction: Little is known about the proteomic changes at the portals of entry in rainbow trout after infection with the myxozoan parasites, Myxobolus cerebralis, and Tetracapsuloides bryosalmonae. Whirling disease (WD) is a severe disease of salmonids, caused by the myxosporean M. cerebralis, while, proliferative kidney disease (PKD) is caused by T. bryosalmonae, which instead belongs to the class Malacosporea. Climate change is providing more suitable conditions for myxozoan parasites lifecycle, posing a high risk to salmonid aquaculture and contributing to the decline of wild trout populations in North America and Europe. Therefore, the aim of this study was to provide the first proteomic profiles of the host in the search for evasion strategies during single and coinfection with M. cerebralis and T. bryosalmonae. Methods: One group of fish was initially infected with M. cerebralis and another group with T. bryosalmonae. After 30 days, half of the fish in each group were co-infected with the other parasite. Using a quantitative proteomic approach, we investigated proteomic changes in the caudal fins and gills of rainbow trout before and after co-infection. Results: In the caudal fins, 16 proteins were differentially regulated post exposure to M. cerebralis, whereas 27 proteins were differentially modulated in the gills of the infected rainbow trout post exposure to T. bryosalmonae. After co-infection, 4 proteins involved in parasite recognition and the regulation of host immune responses were differentially modulated between the groups in the caudal fin. In the gills, 11 proteins involved in parasite recognition and host immunity, including 4 myxozoan proteins predicted to be virulence factors, were differentially modulated. Discussion: The results of this study increase our knowledge on rainbow trout co-infections by myxozoan parasites and rainbow trout immune responses against myxozoans at the portals of entry, supporting a better understanding of these host-parasite interactions.


Assuntos
Coinfecção , Doenças dos Peixes , Myxobolus , Myxozoa , Oncorhynchus mykiss , Doenças Parasitárias em Animais , Proteômica , Animais , Oncorhynchus mykiss/parasitologia , Oncorhynchus mykiss/imunologia , Doenças dos Peixes/parasitologia , Doenças dos Peixes/imunologia , Doenças Parasitárias em Animais/imunologia , Doenças Parasitárias em Animais/parasitologia , Coinfecção/parasitologia , Coinfecção/veterinária , Coinfecção/imunologia , Interações Hospedeiro-Parasita/imunologia , Proteoma , Brânquias/parasitologia , Brânquias/imunologia , Brânquias/metabolismo
3.
Folia Parasitol (Praha) ; 712024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38526292

RESUMO

Two previously undescribed myxozoan species, Henneguya sardellae sp. n. and H. margaritae sp. n., found infecting connective tissues of the Neotropical characid fish Oligosarcus jenynsii (Günther) from Argentina are morphologically and molecularly characterised. Mature spores of H. sardellae sp. n. are ellipsoid, with two, straight and visibly fused caudal appendages cleaved at its blunt terminal end; measuring 33.5 ± 1.2 (30.9-35.5) µm in total length, spore body 17.5 ± 0.6 (16.3-18.6) µm, 7.8 ± 0.4 (7.0-8.8) µm wide and 6.9 ± 0.2 (6.6-7.2) µm thick, with two elongated, unequally-sized polar capsules situated at anterior end, and 11-13 turns of polar tubules. Mature spores of H. margaritae sp. n. are pyriform, with two caudal appendages visible fused together and much longer than spore body, with unequal endings; measuring 35.9 ± 2.8 (29.2-40.7) µm in total length, spore body 11.5 ± 0.9 (9.2-13.0) µm long, 5.8 ± 0.4 (5.1-6.7) µm wide and 5.5 ± 0.2 (5.1-5.8) µm thick, with two polar capsules similar in size, pyriform polar capsules containing polar tubules with 4-5 coils. Both species showed a membraneous sheath surrounding the spore body and caudal appendages; in H. sardellae sp. n. this feature can deploy laterally. Phylogenetic analyses based on SSU rDNA sequences showed that H. sardellae sp. n. and H. margaritae sp. n. clustered with other myxobolids parasitising Characiformes in Brazil, Cichliformes in Mexico and Cyprinodontiformes in Mexico and the United States. The description of these two new species of Henneguya as the first described species of the genus that parasitise freshwater fish in Argentina highlights the importance of further research on the diversity and distribution of myxozoans in this region.


Assuntos
Characidae , Caraciformes , Cnidários , Myxozoa , Animais , Lagos , Argentina/epidemiologia , Filogenia , Myxozoa/genética
4.
Sci Rep ; 14(1): 3545, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347054

RESUMO

RNA interference (RNAi) is an effective approach to suppress gene expression and monitor gene regulation. Despite its wide application, its use is limited in certain taxonomic groups, including cnidarians. Myxozoans are a unique group of cnidarian parasites that diverged from their free-living ancestors about 600 million years ago, with several species causing acute disease in farmed and wild fish populations. In this pioneering study we successfully applied RNAi in blood stages of the myxozoan Sphaerospora molnari, combining a dsRNA soaking approach, real-time PCR, confocal microscopy, and Western blotting. For proof of concept, we knocked down two unusual actins, one of which is known to play a critical role in S. molnari cell motility. We observed intracellular uptake of dsRNA after 30 min and accumulation in all cells of the typical myxozoan cell-in-cell structure. We successfully knocked down actin in S. molnari in vitro, with transient inhibition for 48 h. We observed the disruption of the cytoskeletal network within the primary cell and loss of the characteristic rotational cell motility. This RNAi workflow could significantly advance functional research within the Myxozoa, offering new prospects for investigating therapeutic targets and facilitating drug discovery against economically important fish parasites.


Assuntos
Cnidários , Doenças dos Peixes , Myxozoa , Parasitos , Animais , Cnidários/genética , Interferência de RNA , Myxozoa/genética , Movimento Celular , Peixes , Actinas/genética , Doenças dos Peixes/genética , Filogenia
5.
Front Immunol ; 14: 1041325, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875079

RESUMO

The myxozoan parasite Tetracapsuloides bryosalmonae is the causative agent of proliferative kidney disease (PKD)-a disease of salmonid fishes, notably of the commercially farmed rainbow trout Oncorhynchus mykiss. Both wild and farmed salmonids are threatened by this virulent/deadly disease, a chronic immunopathology characterized by massive lymphocyte proliferation and hyperplasia, which manifests as swollen kidneys in susceptible hosts. Studying the immune response towards the parasite helps us understand the causes and consequences of PKD. While examining the B cell population during a seasonal outbreak of PKD, we unexpectedly detected the B cell marker immunoglobulin M (IgM) on red blood cells (RBCs) of infected farmed rainbow trout. Here, we studied the nature of this IgM and this IgM+ cell population. We verified the presence of surface IgM via parallel approaches: flow cytometry, microscopy, and mass spectrometry. The levels of surface IgM (allowing complete resolution of IgM- RBCs from IgM+ RBCs) and frequency of IgM+ RBCs (with up to 99% of RBCs being positive) have not been described before in healthy fishes nor those suffering from disease. To assess the influence of the disease on these cells, we profiled the transcriptomes of teleost RBCs in health and disease. Compared to RBCs originating from healthy fish, PKD fundamentally altered RBCs in their metabolism, adhesion, and innate immune response to inflammation. In summary, RBCs play a larger role in host immunity than previously appreciated. Specifically, our findings indicate that the nucleated RBCs of rainbow trout interact with host IgM and contribute to the immune response in PKD.


Assuntos
Nefropatias , Oncorhynchus mykiss , Animais , Eritrócitos , Linfócitos B , Imunoglobulina M
6.
Int J Parasitol ; 52(10): 667-675, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35970383

RESUMO

In free-living cnidarians, minicollagens are major structural components in the biogenesis of nematocysts. Recent sequence mining and proteomic analysis demonstrate that minicollagens are also expressed by myxozoans, a group of evolutionarily ancient cnidarian endoparasites. Nonetheless, the presence and abundance of nematocyst-associated genes/proteins in nematocyst morphogenesis have never been studied in Myxozoa. Here, we report the gene expression profiles of three myxozoan minicollagens, ncol-1, ncol-3, and the recently identified noncanonical ncol-5, during the intrapiscine development of Myxidium lieberkuehni, the myxozoan parasite of the northern pike, Esox lucius. Moreover, we localized the myxozoan-specific minicollagen Ncol-5 in the developing myxosporean stages by Western blotting, immunofluorescence, and immunogold electron microscopy. We found that expression of minicollagens was spatiotemporally restricted to developing nematocysts within the myxospores during sporogenesis. Intriguingly, Ncol-5 is localized in the walls of nematocysts and predominantly in nematocyst tubules. Overall, we demonstrate that despite being significantly reduced in morphology, myxozoans retain structural components associated with nematocyst development in free-living cnidarians. Furthermore, our findings have practical implications for future functional and comparative studies as minicollagens are useful markers of the developmental phase of myxozoan parasites.


Assuntos
Cnidários , Myxozoa , Animais , Nematocisto , Proteômica , Colágeno/química , Colágeno/genética , Colágeno/metabolismo , Cnidários/genética , Cnidários/anatomia & histologia , Myxozoa/genética
7.
Infect Genet Evol ; 103: 105346, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35932999

RESUMO

Myxozoa is a group of endoparasitic cnidarians covering almost 2600 species but merely 53 species, mostly from the genus Chloromyxum, have been reported from sharks, rays, and skates (Elasmobranchii). Elasmobranchs play a key role in the study of evolutionary trajectories of myxozoans as they represent ancestral vertebrate hosts. Our study provides new data on Chloromyxum spp. from 57 elasmobranchs, covering 20 species from geographical regions and host groups not previously investigated, such as Lamniformes and Hexanchiformes, the most basal phylogenetic shark lineage. In total, 28% of elasmobranchs were infected with Chloromyxum spp., indicating high diversity. Of the seven distinguished species, six are formally described based on morphological, morphometric, and genetic (18S rDNA) data. Comprehensive co-phylogenetic analyses and ancestral state reconstruction revealed that parasite and host phylogenies are clearly correlated, resulting in a distinct phylogenetic separation of chloromyxids from selachid (shark) vs. batoid (ray and skate) hosts. Species infecting the most ancient elasmobranchs formed a sublineage, branching off in the middle of the Chloromyxum sensu stricto clade. Our findings indicate that chloromyxids likely invaded an ancestral elasmobranch prior the time of divergence of shark and batoid lineages. Our analyses did not show a clear phylogeographic pattern of Chloromyxum parasites, probably due to the cosmopolitan distribution and migratory behaviour of many elasmobranch hosts, but geographical sampling must be extended to confirm or refute this observation. This study provides a complex view on species diversity, phylogeny, evolution, host-parasite co-phylogeny, and the phylogeographic origin of Chloromyxum species from elasmobranchs. Our results highlight the importance of adding missing data from previously un- or undersampled geographical regions and host species which results in a more accurate estimate of myxozoan biodiversity and a better understanding of the evolution of this parasite group in their hosts and in the different oceans of our planet.


Assuntos
Elasmobrânquios , Myxozoa , Parasitos , Animais , Elasmobrânquios/genética , Elasmobrânquios/parasitologia , Peixes/parasitologia , Myxozoa/genética , Filogenia
8.
Cells ; 11(3)2022 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-35159187

RESUMO

Myxozoans are a diverse group of microscopic cnidarian parasites and some representatives are associated with important diseases in fish, in both marine and freshwater aquaculture systems. Research on myxozoans has been largely hampered by the inability to isolate myxozoan parasites from their host tissues. In this study, we developed and optimized a method to isolate the myxozoan proliferative stages of different size and cellularity from fish blood, using DEAE-cellulose ion exchange chromatography. We optimized several parameters and obtained 99-100% parasite purity, as well as high survival and infectivity. Using polyclonal pan-carp blood cell-specific antibodies, we further developed a rapid cytometric assay for quantification of the proliferative stages, not only in highly concentrated DEAE-C isolates but also in dilute conditions in full blood. Early developmental stages of myxozoans are key to parasite proliferation, establishment, and pathology in their hosts. The isolation of these stages not only opens new possibilities for in vivo and in vitro studies, but also for obtaining purified DNA and protein extracts for downstream analyses. Hence, we provide a long-desired tool that will advance the functional research into the mechanisms of host exploitation and immune stimulation/evasion in this group, which could contribute greatly to the development of therapeutic strategies against myxozoans.


Assuntos
Carpas , Doenças dos Peixes , Myxozoa , Animais , Anticorpos , Aquicultura , Genômica , Myxozoa/genética
9.
Biomolecules ; 12(2)2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35204827

RESUMO

Poly lactic-co-glycolic acid (PLGA) particles safely and effectively deliver pharmaceutical ingredients, with many applications approved for clinical use in humans. In fishes, PLGA particles are being considered as carriers of therapeutic drugs and vaccine antigens. However, existing studies focus mainly on vaccine antigens, the endpoint immune responses to these (e.g., improved antibody titres), without deeper understanding of whether fishes react to the carrier. To test whether or not PLGA are recognized by or interact at all with the immune system of a teleost fish, we prepared, characterized and injected PLGA microparticles intraperitoneally into common carp. The influx, phenotype of inflammatory leukocytes, and their capacity to produce reactive oxygen species and phagocytose PLGA microparticles were tested by flow cytometry, qPCR, and microscopy. PLGA microparticles were indeed recognized. However, they induced only transient recruitment of inflammatory leukocytes that was resolved 4 days later whereas only the smallest µm-sized particles were phagocytosed. The overall response resembled that described in mammals against foreign materials. Given the similarities between our findings and those described in mammals, PLGA particles can be adapted to play a dual role as both antigen and drug carriers in fishes, depending on the administered dose and their design.


Assuntos
Carpas , Vacinas , Animais , Antígenos , Glicóis , Imunidade , Ácido Láctico , Mamíferos , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Vacinas/farmacologia
10.
Int J Parasitol ; 52(2-3): 97-110, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34302843

RESUMO

Myxozoa represent a diverse group of microscopic cnidarian endoparasites alternating between invertebrate and vertebrate hosts. Of the approximately 2,600 species described predominantly from teleost fish, only 1.8% have been reported from cartilaginous fishes (Elasmobranchii). As ancestral vertebrate hosts of myxozoans, elasmobranchs may have played an important role in myxozoan evolution, however, they are also some of the largest vertebrate hosts known for this group of parasites. We screened 50 elasmobranchs belonging to nine species and seven families, from various geographical areas, for myxozoan infection. We found a 22% overall prevalence of myxozoans in elasmobranchs and describe five species new to science. We investigated, for the first known time, the evolution of spore size within three phylogenetic clades, Ceratomyxa, Sphaerospora sensu stricto and Parvicapsula. We found that spores from elasmobranch-infecting myxozoans were on average 4.8× (Ceratomyxa), 2.2× (Parvicapsula clade) and 1.8× (Sphaerospora sensu stricto except polysporoplasmic Sphaerospora spp.) larger than those from teleosts. In all analysed clades, spore size was correlated with phylogenetic position. In ceratomyxids, it was further strongly positively correlated with fish body size and habitat depth, independent of cellular composition of the spores and phylogenetic position in the tree. While in macroparasites a host size-correlated increase in parasite size occurs on a large scale and is often related to improved exploitation of host resources, in microscopic parasites size ranges vary at the scale of a few micrometres, disproportionate to the available additional space in a large host. We discuss the ecological role of these changes with regard to transmission under high pressure and an invertebrate fauna that is adapted to deeper marine habitats.


Assuntos
Elasmobrânquios , Doenças dos Peixes , Myxozoa , Parasitos , Doenças Parasitárias em Animais , Animais , Doenças dos Peixes/parasitologia , Peixes/parasitologia , Humanos , Myxozoa/genética , Doenças Parasitárias em Animais/parasitologia , Filogenia , Esporos
11.
Front Immunol ; 12: 734238, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603313

RESUMO

Myxozoans are microscopic, metazoan, obligate parasites, belonging to the phylum Cnidaria. In contrast to the free-living lifestyle of most members of this taxon, myxozoans have complex life cycles alternating between vertebrate and invertebrate hosts. Vertebrate hosts are primarily fish, although they are also reported from amphibians, reptiles, trematodes, mollusks, birds and mammals. Invertebrate hosts include annelids and bryozoans. Most myxozoans are not overtly pathogenic to fish hosts, but some are responsible for severe economic losses in fisheries and aquaculture. In both scenarios, the interaction between the parasite and the host immune system is key to explain such different outcomes of this relationship. Innate immune responses contribute to the resistance of certain fish strains and species, and the absence or low levels of some innate and regulatory factors explain the high pathogenicity of some infections. In many cases, immune evasion explains the absence of a host response and allows the parasite to proliferate covertly during the first stages of the infection. In some infections, the lack of an appropriate regulatory response results in an excessive inflammatory response, causing immunopathological consequences that are worse than inflicted by the parasite itself. This review will update the available information about the immune responses against Myxozoa, with special focus on T and B lymphocyte and immunoglobulin responses, how these immune effectors are modulated by different biotic and abiotic factors, and on the mechanisms of immune evasion targeting specific immune effectors. The current and future design of control strategies for myxozoan diseases is based on understanding this myxozoan-fish interaction, and immune-based strategies such as improvement of innate and specific factors through diets and additives, host genetic selection, passive immunization and vaccination, are starting to be considered.


Assuntos
Imunidade Adaptativa , Doenças dos Peixes/imunologia , Peixes/imunologia , Imunidade Inata , Myxozoa/imunologia , Doenças Parasitárias em Animais/imunologia , Animais , Antiparasitários/farmacologia , Aquicultura , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/parasitologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/parasitologia , Doenças dos Peixes/prevenção & controle , Peixes/metabolismo , Peixes/parasitologia , Interações Hospedeiro-Parasita , Evasão da Resposta Imune , Imunoglobulinas/imunologia , Imunoglobulinas/metabolismo , Myxozoa/efeitos dos fármacos , Myxozoa/patogenicidade , Doenças Parasitárias em Animais/metabolismo , Doenças Parasitárias em Animais/parasitologia , Doenças Parasitárias em Animais/prevenção & controle , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/parasitologia , Vacinas/farmacologia
12.
BMC Genomics ; 22(1): 198, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33743585

RESUMO

BACKGROUND: Lineage-specific gene expansions represent one of the driving forces in the evolutionary dynamics of unique phylum traits. Myxozoa, a cnidarian subphylum of obligate parasites, are evolutionarily altered and highly reduced organisms with a simple body plan including cnidarian-specific organelles and polar capsules (a type of nematocyst). Minicollagens, a group of structural proteins, are prominent constituents of nematocysts linking Myxozoa and Cnidaria. Despite recent advances in the identification of minicollagens in Myxozoa, the evolutionary history and diversity of minicollagens in Myxozoa and Cnidaria remain elusive. RESULTS: We generated new transcriptomes of two myxozoan species using a novel pipeline for filtering of closely related contaminant species in RNA-seq data. Mining of our transcriptomes and published omics data confirmed the existence of myxozoan Ncol-4, reported only once previously, and revealed a novel noncanonical minicollagen, Ncol-5, which is exclusive to Myxozoa. Phylogenetic analyses support a close relationship between myxozoan Ncol-1-3 with minicollagens of Polypodium hydriforme, but suggest independent evolution in the case of the myxozoan minicollagens Ncol-4 and Ncol-5. Additional genome- and transcriptome-wide searches of cnidarian minicollagens expanded the dataset to better clarify the evolutionary trajectories of minicollagen. CONCLUSIONS: The development of a new approach for the handling of next-generation data contaminated by closely related species represents a useful tool for future applications beyond the field of myxozoan research. This data processing pipeline allowed us to expand the dataset and study the evolution and diversity of minicollagen genes in Myxozoa and Cnidaria. We identified a novel type of minicollagen in Myxozoa (Ncol-5). We suggest that the large number of minicollagen paralogs in some cnidarians is a result of several recent large gene multiplication events. We revealed close juxtaposition of minicollagens Ncol-1 and Ncol-4 in myxozoan genomes, suggesting their common evolutionary history. The unique gene structure of myxozoan Ncol-5 suggests a specific function in the myxozoan polar capsule or tubule. Despite the fact that myxozoans possess only one type of nematocyst, their gene repertoire is similar to those of other cnidarians.


Assuntos
Myxozoa , Parasitos , Animais , Genoma , Estilo de Vida , Myxozoa/genética , Filogenia
13.
Trends Parasitol ; 37(6): 552-568, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33619004

RESUMO

Myxozoans are highly diverse and globally distributed cnidarian endoparasites in freshwater and marine habitats. They have adopted a heteroxenous life cycle, including invertebrate and fish hosts, and have been associated with diseases in aquaculture and wild fish stocks. Despite their importance, genomic resources of myxozoans have proven difficult to obtain due to their miniaturized and derived genome character and close associations with fish tissues. The first 'omic' datasets have now become the main resource for a better understanding of host-parasite interactions, virulence, and diversity, but also the evolutionary history of myxozoans. In this review, we discuss recent genomic advances in the field and outline outstanding questions to be answered with continuous and improved efforts of generating myxozoan genomic data.


Assuntos
Genoma/genética , Myxozoa/genética , Animais , Genômica/tendências , Myxozoa/classificação , Myxozoa/patogenicidade , Doenças Parasitárias/parasitologia , Doenças Parasitárias/transmissão
14.
Biology (Basel) ; 10(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546310

RESUMO

The evolutionary aspects of cystatins are greatly underexplored in early-emerging metazoans. Thus, we surveyed the gene organization, protein architecture, and phylogeny of cystatin homologues mined from 110 genomes and the transcriptomes of 58 basal metazoan species, encompassing free-living and parasite taxa of Porifera, Placozoa, Cnidaria (including Myxozoa), and Ctenophora. We found that the cystatin gene repertoire significantly differs among phyla, with stefins present in most of the investigated lineages but with type 2 cystatins missing in several basal metazoan groups. Similar to liver and intestinal flukes, myxozoan parasites possess atypical stefins with chimeric structure that combine motifs of classical stefins and type 2 cystatins. Other early metazoan taxa regardless of lifestyle have only the classical representation of cystatins and lack multi-domain ones. Our comprehensive phylogenetic analyses revealed that stefins and type 2 cystatins clustered into taxonomically defined clades with multiple independent paralogous groups, which probably arose due to gene duplications. The stefin clade split between the subclades of classical stefins and the atypical stefins of myxozoans and flukes. Atypical stefins represent key evolutionary innovations of the two parasite groups for which their origin might have been linked with ancestral gene chimerization, obligate parasitism, life cycle complexity, genome reduction, and host immunity.

15.
Front Cell Infect Microbiol ; 11: 804864, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071050

RESUMO

Proteases and their inhibitors play critical roles in host-parasite interactions and in the outcomes of infections. Ceratonova shasta is a myxozoan pathogen that causes enteronecrosis in economically important salmonids from the Pacific Northwest of North America. This cnidarian parasite has host-specific genotypes with varying virulence, making it a powerful system to decipher virulence mechanisms in myxozoans. Using C. shasta genome and transcriptome, we identified four proteases of different catalytic types: cathepsin D (aspartic), cathepsin L and Z-like (cysteine) and aminopeptidase-N (metallo); and a stefin (cysteine protease inhibitor), which implied involvement in virulence and hence represent target molecules for the development of therapeutic strategies. We characterized, annotated and modelled their 3D protein structure using bioinformatics and computational tools. We quantified their expression in C. shasta genotype 0 (low virulence, no mortality) and IIR (high virulence and mortality) in rainbow trout Oncorhynchus mykiss, to demonstrate that there are major differences between the genotypes during infection and parasite development. High proliferation of genotype IIR was associated with high expression of the cathepsin D and the stefin, likely correlated with high nutrient demands and to regulate cell metabolism, with upregulation preceding massive proliferation and systemic dispersion. In contrast, upregulation of the cathepsin L and Z-like cysteine proteases may have roles in host immune evasion in genotype 0 infections, which are associated with low proliferation, low inflammation and non-destructive development. In contrast to the other proteases, C. shasta aminopeptidase-N appears to have a prominent role in nematocyst formation in both genotypes, but only during sporogenesis. Homology searches of C. shasta proteases against other myxozoan transcriptomes revealed a high abundance of cathepsin L and aminopeptidase homologs suggesting common gene requirements across species. Our study identified molecules of potential therapeutic significance for aquaculture and serves as a baseline for future research aimed at functional characterisation of these targets.


Assuntos
Cnidários , Doenças dos Peixes , Oncorhynchus mykiss , Doenças Parasitárias em Animais , Animais , Doenças dos Peixes/parasitologia , Oncorhynchus mykiss/parasitologia , Peptídeo Hidrolases , Virulência
16.
Pathogens ; 9(12)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276442

RESUMO

Myxozoans are a diverse group of cnidarian parasites, including important pathogens in different aquaculture species, without effective legalized treatments for fish destined for human consumption. We tested the effect of natural feed additives on immune parameters of common carp and in the course of a controlled laboratory infection with the myxozoan Sphaerospora molnari. Carp were fed a base diet enriched with 0.5% curcumin or 0.12% of a multi-strain yeast fraction, before intraperitoneal injection with blood stages of S. molnari. We demonstrate the impact of these treatments on respiratory burst, phagocytosis, nitric oxide production, adaptive IgM+ B cell responses, S. molnari-specific antibody titers, and on parasite numbers. Both experimental diets enriched B cell populations prior to infection and postponed initial parasite proliferation in the blood. Curcumin-fed fish showed a decrease in reactive oxygen species, nitric oxide production and B cell density at late-stage infection, likely due to its anti-inflammatory properties, favoring parasite propagation. In contrast, multi-strain yeast fraction (MsYF)-fed fish harbored the highest S. molnari-specific antibody titer, in combination with the overall lowest parasite numbers. The results demonstrate that yeast products can be highly beneficial for the outcome of myxozoan infections and could be used as effective feed additives in aquaculture.

17.
Microorganisms ; 8(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003479

RESUMO

We studied the genetic variability of serine protease inhibitors (serpins) of Myxozoa, microscopic endoparasites of fish. Myxozoans affect the health of both farmed and wild fish populations, causing diseases and mortalities. Despite their global impact, no effective protection exists against these parasites. Serpins were reported as important factors for host invasion and immune evasion, and as promising targets for the development of antiparasitic therapies. For the first time, we identified and aligned serpin sequences from high throughput sequencing datasets of ten myxozoan species, and analyzed 146 serpins from this parasite group together with those of other taxa phylogenetically, to explore their relationship and origins. High intra- and interspecific variability was detected among the examined serpins. The average sequence identity was 25-30% only. The conserved domains (i.e., motif and signature) showed taxon-level differences. Serpins clustered according to taxonomy rather than to serpin types, and myxozoan serpins seemed to be highly divergent from that of other taxa. None of them clustered with their closest relative free-living cnidarians. The genetic distinction of myxozoan serpins further strengthens the idea of an independent origin of Myxozoa, and may indicate novel protein functions potentially related to parasitism in this animal group.

18.
Folia Parasitol (Praha) ; 672020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32764187

RESUMO

Myxobolus pseudodispar Gorbunova, 1936 (Myxozoa) was originally described as a parasite of common roach, Rutilus rutilus (Linnaeus), with developing stages in muscles and spores disseminated in macrophage centres of different organs and tissues. Later, this parasite was described from several other cyprinids, but with relatively large intraspecific differences based on SSU rDNA gene sequences. Within our long-term study on myxozoan biodiversity, we performed a broad microscopic and molecular screening of various freshwater fish species (over 450 specimens, 36 species) from different localities. We investigated the cryptic species status of M. pseudodispar. Our analysis revealed four new unique SSU rDNA sequences of M. pseudodispar as well as an infection in new fish host species. Myxobolus pseudodispar sequence analysis showed clear phylogenetic grouping according to fish host criterion forming 13 well-recognised clades. Using 1% SSU rDNA-based genetic distance criterion, at least ten new species of Myxobolus Bütschli, 1882 may be recognised in the group of M. pseudodispar sequences. Our analysis showed the paraphyletic character of M. pseudodispar sequences and the statistical tests rejected hypothetical tree topology with the monophyletic status of the M. pseudodispar group. Myxobolus pseudodispar represents a species complex and it is a typical example of myxozoan hidden diversity phenomenon confirming myxozoans as an evolutionary very successful group of parasites with a great ability to adapt to a new hosts with subsequent speciation events.


Assuntos
Biodiversidade , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Myxobolus/classificação , Myxobolus/fisiologia , Doenças Parasitárias em Animais/parasitologia , Animais , Evolução Biológica , DNA Ribossômico/análise
19.
BMC Genomics ; 21(1): 404, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546190

RESUMO

BACKGROUND: Parasites employ proteases to evade host immune systems, feed and replicate and are often the target of anti-parasite strategies to disrupt these interactions. Myxozoans are obligate cnidarian parasites, alternating between invertebrate and fish hosts. Their genes are highly divergent from other metazoans, and available genomic and transcriptomic datasets are limited. Some myxozoans are important aquaculture pathogens such as Sphaerospora molnari replicating in the blood of farmed carp before reaching the gills for sporogenesis and transmission. Proliferative stages cause a massive systemic lymphocyte response and the disruption of the gill epithelia by spore-forming stages leads to respiratory problems and mortalities. In the absence of a S. molnari genome, we utilized a de novo approach to assemble the first transcriptome of proliferative myxozoan stages to identify S. molnari proteases that are upregulated during the first stages of infection when the parasite multiplies massively, rather than in late spore-forming plasmodia. Furthermore, a subset of orthologs was used to characterize 3D structures and putative druggable targets. RESULTS: An assembled and host filtered transcriptome containing 9436 proteins, mapping to 29,560 contigs was mined for protease virulence factors and revealed that cysteine proteases were most common (38%), at a higher percentage than other myxozoans or cnidarians (25-30%). Two cathepsin Ls that were found upregulated in spore-forming stages with a presenilin like aspartic protease and a dipeptidyl peptidase. We also identified downregulated proteases in the spore-forming development when compared with proliferative stages including an astacin metallopeptidase and lipases (qPCR). In total, 235 transcripts were identified as putative proteases using a MEROPS database. In silico analysis of highly transcribed cathepsins revealed potential drug targets within this data set that should be prioritised for development. CONCLUSIONS: In silico surveys for proteins are essential in drug discovery and understanding host-parasite interactions in non-model systems. The present study of S. molnari's protease arsenal reveals previously unknown proteases potentially used for host exploitation and immune evasion. The pioneering dataset serves as a model for myxozoan virulence research, which is of particular importance as myxozoan diseases have recently been shown to emerge and expand geographically, due to climate change.


Assuntos
Carpas/microbiologia , Doenças dos Peixes/parasitologia , Myxozoa/genética , Doenças Parasitárias em Animais/parasitologia , Peptídeo Hidrolases/genética , Animais , Antiparasitários/farmacologia , Antiparasitários/uso terapêutico , Descoberta de Drogas , Doenças dos Peixes/terapia , Myxozoa/crescimento & desenvolvimento , Doenças Parasitárias em Animais/terapia , Filogenia , Transcriptoma , Fatores de Virulência
20.
Genome Biol Evol ; 12(8): 1258-1276, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32467979

RESUMO

Ceratonova shasta is an important myxozoan pathogen affecting the health of salmonid fishes in the Pacific Northwest of North America. Ceratonova shasta exists as a complex of host-specific genotypes, some with low to moderate virulence, and one that causes a profound, lethal infection in susceptible hosts. High throughput sequencing methods are powerful tools for discovering the genetic basis of these host/virulence differences, but deep sequencing of myxozoans has been challenging due to extremely fast molecular evolution of this group, yielding strongly divergent sequences that are difficult to identify, and unavoidable host contamination. We designed and optimized different bioinformatic pipelines to address these challenges. We obtained a unique set of comprehensive, host-free myxozoan RNA-seq data from C. shasta genotypes of varying virulence from different salmonid hosts. Analyses of transcriptome-wide genetic distances and maximum likelihood multigene phylogenies elucidated the evolutionary relationship between lineages and demonstrated the limited resolution of the established Internal Transcribed Spacer marker for C. shasta genotype identification, as this marker fails to differentiate between biologically distinct genotype II lineages from coho salmon and rainbow trout. We further analyzed the data sets based on polymorphisms in two gene groups related to virulence: cell migration and proteolytic enzymes including their inhibitors. The developed single-nucleotide polymorphism-calling pipeline identified polymorphisms between genotypes and demonstrated that variations in both motility and protease genes were associated with different levels of virulence of C. shasta in its salmonid hosts. The prospective use of proteolytic enzymes as promising candidates for targeted interventions against myxozoans in aquaculture is discussed. We developed host-free transcriptomes of a myxozoan model organism from strains that exhibited different degrees of virulence, as a unique source of data that will foster functional gene analyses and serve as a base for the development of potential therapeutics for efficient control of these parasites.


Assuntos
Interações Hospedeiro-Parasita/genética , Myxozoa/genética , Oncorhynchus mykiss/parasitologia , Fatores de Virulência/genética , Animais , Contaminação por DNA , Genótipo , Myxozoa/patogenicidade , Filogenia , Polimorfismo de Nucleotídeo Único , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA