Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Euro Surveill ; 29(6)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38333936

RESUMO

Crimean-Congo haemorrhagic fever (CCHF), a potentially severe zoonotic viral disease causing fever and haemorrhagic manifestations in humans. As the Crimean-Congo haemorrhagic fever virus (CCHFV) has been detected in ticks in Spain and antibodies against the virus in ruminant sera in Corsica, it was necessary to know more about the situation in France. In 2022-2023, CCHFV was detected in 155 ticks collected from horses and cattle in southern France.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Ixodidae , Carrapatos , Humanos , Animais , Bovinos , Cavalos , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Febre Hemorrágica da Crimeia/diagnóstico , Febre Hemorrágica da Crimeia/epidemiologia , Febre Hemorrágica da Crimeia/veterinária , Zoonoses , França/epidemiologia
2.
J Virol ; 97(10): e0072323, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37737587

RESUMO

IMPORTANCE: Lumpy skin disease virus (LSDV) is the causative agent of an economically important cattle disease which is notifiable to the World Organisation for Animal Health. Over the past decades, the disease has spread at an alarming rate throughout the African continent, the Middle East, Eastern Europe, the Russian Federation, and many Asian countries. While multiple LDSV whole genomes have made further genetic comparative analyses possible, knowledge on the protein composition of the LSDV particle remains lacking. This study provides for the first time a comprehensive proteomic analysis of an infectious LSDV particle, prompting new efforts toward further proteomic LSDV strain characterization. Furthermore, this first incursion within the capripoxvirus proteome represents one of very few proteomic studies beyond the sole Orthopoxvirus genus, for which most of the proteomics studies have been performed. Providing new information about other chordopoxviruses may contribute to shedding new light on protein composition within the Poxviridae family.


Assuntos
Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Proteômica , Proteínas Virais , Animais , Bovinos , Doença Nodular Cutânea/virologia , Vírus da Doença Nodular Cutânea/metabolismo , Vírion/metabolismo , Proteínas Virais/análise , Proteínas Virais/metabolismo , Proteoma/análise , Proteoma/metabolismo
3.
PLoS One ; 17(9): e0273494, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36070252

RESUMO

High-throughput screening of available genomic data and identification of potential antigenic candidates have promoted the development of epitope-based vaccines and therapeutics. Several immunoinformatic tools are available to predict potential epitopes and other immunogenicity-related features, yet it is still challenging and time-consuming to compare and integrate results from different algorithms. We developed the R script SILVI (short for: from in silico to in vivo), to assist in the selection of the potentially most immunogenic T-cell epitopes from Human Leukocyte Antigen (HLA)-binding prediction data. SILVI merges and compares data from available HLA-binding prediction servers, and integrates additional relevant information of predicted epitopes, namely BLASTp alignments with host proteins and physical-chemical properties. The two default criteria applied by SILVI and additional filtering allow the fast selection of the most conserved, promiscuous, strong binding T-cell epitopes. Users may adapt the script at their discretion as it is written in open-source R language. To demonstrate the workflow and present selection options, SILVI was used to integrate HLA-binding prediction results of three example proteins, from viral, bacterial and parasitic microorganisms, containing validated epitopes included in the Immune Epitope Database (IEDB), plus the Human Papillomavirus (HPV) proteome. Applying different filters on predicted IC50, hydrophobicity and mismatches with host proteins allows to significantly reduce the epitope lists with favourable sensitivity and specificity to select immunogenic epitopes. We contemplate SILVI will assist T-cell epitope selections and can be continuously refined in a community-driven manner, helping the improvement and design of peptide-based vaccines or immunotherapies. SILVI development version is available at: github.com/JoanaPissarra/SILVI2020 and https://doi.org/10.5281/zenodo.6865909.


Assuntos
Epitopos de Linfócito T , Vacinas , Algoritmos , Epitopos de Linfócito T/genética , Humanos , Ativação Linfocitária , Proteínas
4.
Front Vet Sci ; 9: 932304, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928117

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) is a viral zoonotic disease resulting in hemorrhagic syndrome in humans. Its causative agent is naturally transmitted by ticks to non-human vertebrate hosts within an enzootic sylvatic cycle. Ticks are considered biological vectors, as well as reservoirs for CCHF virus (CCHFV), as they are able to maintain the virus for several months or even years and to transmit CCHFV to other ticks. Although animals are not symptomatic, some of them can sufficiently replicate the virus, becoming a source of infection for ticks as well as humans through direct contact with contaminated body fluids. The recent emergence of CCHF in Spain indicates that tick-human interaction rates promoting virus transmission are changing and lead to the emergence of CCHF. In other European countries such as France, the presence of one of its main tick vectors and the detection of antibodies targeting CCHFV in animals, at least in Corsica and in the absence of human cases, suggest that CCHFV could be spreading silently. In this review, we study the CCHFV epidemiological cycle as hypothesized in the French local context and select the most likely parameters that may influence virus transmission among tick vectors and non-human vertebrate hosts. For this, a total of 1,035 articles dating from 1957 to 2021 were selected for data extraction. This study made it possible to identify the tick species that seem to be the best candidate vectors of CCHFV in France, but also to highlight the importance of the abundance and composition of local host communities on vectors' infection prevalence. Regarding the presumed transmission cycle involving Hyalomma marginatum, as it might exist in France, at least in Corsica, it is assumed that tick vectors are still weakly infected and the probability of disease emergence in humans remains low. The likelihood of factors that may modify this equilibrium is discussed.

5.
J Proteome Res ; 21(1): 30-48, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34806897

RESUMO

Leishmaniasis is one of the most impactful parasitic diseases worldwide, endangering the lives of 1 billion people every year. There are 20 different species of Leishmania able to infect humans, causing cutaneous (CL), visceral (VL), and/or mucocutaneous leishmaniasis (MCL). Leishmania parasites are known to secrete a plethora of proteins to establish infection and modulate the host's immune system. In this study, we analyzed using tandem mass spectrometry the total protein content of the secretomes produced by promastigote forms from seven Leishmania species grown in serum-free in vitro cultures. The core secretome shared by all seven Leishmania species corresponds to up to one-third of total secreted proteins, suggesting conserved mechanisms of adaptation to the vertebrate host. The relative abundance confirms the importance of known virulence factors and some proteins uniquely present in CL- or VL-causing species and may provide further insight regarding their pathogenesis. Bioinformatic analysis showed that most proteins were secreted via unconventional mechanisms, with an important role for vesicle-based secretion for all species. Gene Ontology annotation and enrichment analyses showed a high level of functional conservation among species. This study contributes to the current knowledge on the biological significance of differently secreted proteins and provides new information on the correlation of Leishmania secretome to clinical outcomes and species-specific pathogenesis.


Assuntos
Leishmania , Leishmaniose Cutânea , Leishmaniose Visceral , Humanos , Leishmaniose Visceral/parasitologia , Proteômica/métodos , Secretoma , Especificidade da Espécie , Espectrometria de Massas em Tandem
6.
Front Immunol ; 12: 745315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671358

RESUMO

Peste des petits ruminants (PPR) is an acute transboundary infectious viral disease of small ruminants, mainly sheep and goats. Host susceptibility varies considerably depending on the PPR virus (PPRV) strain, the host species and breed. The effect of strains with different levels of virulence on the modulation of the immune system has not been thoroughly compared in an experimental setting so far. In this study, we used a multi-omics approach to investigate the host cellular factors involved in different infection phenotypes. Peripheral blood mononuclear cells (PBMCs) from Saanen goats were activated with a T-cell mitogen and infected with PPRV strains of different virulence: Morocco 2008 (high virulence), Ivory Coast 1989 (low virulence) and Nigeria 75/1 (live attenuated vaccine strain). Our results showed that the highly virulent strain replicated better than the other two in PBMCs and rapidly induced cell death and a stronger inhibition of lymphocyte proliferation. However, all the strains affected lymphocyte proliferation and induced upregulation of key antiviral genes and proteins, meaning a classical antiviral response is orchestrated regardless of the virulence of the PPRV strain. On the other hand, the highly virulent strain induced stronger inflammatory responses and activated more genes related to lymphocyte migration and recruitment, and inflammatory processes. Both transcriptomic and proteomic approaches were successful in detecting viral and antiviral effectors under all conditions. The present work identified key immunological factors related to PPRV virulence in vitro.


Assuntos
Cabras/imunologia , Leucócitos Mononucleares/imunologia , Peste dos Pequenos Ruminantes/imunologia , Vírus da Peste dos Pequenos Ruminantes/patogenicidade , Virulência/imunologia , Animais , Perfilação da Expressão Gênica , Cabras/virologia , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/imunologia , Proteômica
7.
Microorganisms ; 9(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073568

RESUMO

The Rickettsiales Ehrlichia ruminantium, the causal agent of the fatal tick-borne disease Heartwater, induces severe damage to the vascular endothelium in ruminants. Nevertheless, E. ruminantium-induced pathobiology remains largely unknown. Our work paves the way for understanding this phenomenon by using quantitative proteomic analyses (2D-DIGE-MS/MS, 1DE-nanoLC-MS/MS and biotin-nanoUPLC-MS/MS) of host bovine aorta endothelial cells (BAE) during the in vitro bacterium intracellular replication cycle. We detect 265 bacterial proteins (including virulence factors), at all time-points of the E. ruminantium replication cycle, highlighting a dynamic bacterium-host interaction. We show that E. ruminantium infection modulates the expression of 433 host proteins: 98 being over-expressed, 161 under-expressed, 140 detected only in infected BAE cells and 34 exclusively detected in non-infected cells. Cystoscape integrated data analysis shows that these proteins lead to major changes in host cell immune responses, host cell metabolism and vesicle trafficking, with a clear involvement of inflammation-related proteins in this process. Our findings led to the first model of E. ruminantium infection in host cells in vitro, and we highlight potential biomarkers of E. ruminantium infection in endothelial cells (such as ROCK1, TMEM16K, Albumin and PTPN1), which may be important to further combat Heartwater, namely by developing non-antibiotic-based strategies.

8.
Emerg Infect Dis ; 26(5): 1041-1044, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32310061

RESUMO

We conducted a serologic survey for Crimean-Congo hemorrhagic fever virus antibodies in livestock (cattle, sheep, and goats; N = 3,890) on Corsica (island of France) during 2014-2016. Overall, 9.1% of animals were seropositive, suggesting this virus circulates on Corsica. However, virus identification is needed to confirm these results.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Anticorpos Antivirais , Bovinos , França/epidemiologia , Febre Hemorrágica da Crimeia/epidemiologia , Febre Hemorrágica da Crimeia/veterinária , Gado , Ovinos
9.
Int J Mol Sci ; 21(5)2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-32121441

RESUMO

Unicellular eukaryotes of the Trypanosomatidae family include human and animal pathogens that belong to the Trypanosoma and Leishmania genera. Diagnosis of the diseases they cause requires the sampling of body fluids (e.g., blood, lymph, peritoneal fluid, cerebrospinal fluid) or organ biopsies (e.g., bone marrow, spleen), which are mostly obtained through invasive methods. Body fluids or appendages can be alternatives to these invasive biopsies but appropriateness remains poorly studied. To further address this question, we perform a systematic review on clues evidencing the presence of parasites, genetic material, antibodies, and antigens in body secretions, appendages, or the organs or proximal tissues that produce these materials. Paper selection was based on searches in PubMed, Web of Science, WorldWideScience, SciELO, Embase, and Google. The information of each selected article (n = 333) was classified into different sections and data were extracted from 77 papers. The presence of Trypanosomatidae parasites has been tracked in most of organs or proximal tissues that produce body secretions or appendages, in naturally or experimentally infected hosts. The meta-analysis highlights the paucity of studies on human African trypanosomiasis and an absence on animal trypanosomiasis. Among the collected data high heterogeneity in terms of the I2 statistic (100%) is recorded. A high positivity is recorded for antibody and genetic material detection in urine of patients and dogs suffering leishmaniasis, and of antigens for leishmaniasis and Chagas disease. Data on conjunctival swabs can be analyzed with molecular methods solely for dogs suffering canine visceral leishmaniasis. Saliva and hair/bristles showed a pretty good positivity that support their potential to be used for leishmaniasis diagnosis. In conclusion, our study pinpoints significant gaps that need to be filled in order to properly address the interest of body secretion and hair or bristles for the diagnosis of infections caused by Leishmania and by other Trypanosomatidae parasites.


Assuntos
Leishmania/isolamento & purificação , Trypanosoma/isolamento & purificação , Trypanosomatina/isolamento & purificação , Animais , Doença de Chagas/diagnóstico , Doença de Chagas/parasitologia , Doenças do Cão/diagnóstico , Doenças do Cão/parasitologia , Cães , Humanos , Leishmania/patogenicidade , Leishmaniose/diagnóstico , Leishmaniose/parasitologia , Trypanosoma/patogenicidade , Trypanosomatina/patogenicidade , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/veterinária
10.
NPJ Vaccines ; 4: 49, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31815006

RESUMO

Dogs are the main reservoir of zoonotic visceral leishmaniasis. Vaccination is a promising approach to help control leishmaniasis and to interrupt transmission of the Leishmania parasite. The promastigote surface antigen (PSA) is a highly immunogenic component of Leishmania excretory/secretory products. A vaccine based on three peptides derived from the carboxy-terminal part of Leishmania amazonensis PSA and conserved among Leishmania species, formulated with QA-21 as adjuvant, was tested on naive Beagle dogs in a preclinical trial. Four months after the full course of vaccination, dogs were experimentally infected with Leishmania infantum promastigotes. Immunization of dogs with peptide-based vaccine conferred immunity against experimental infection with L. infantum. Evidence for macrophage nitric oxide production and anti-leishmanial activity associated with IFN-γ production by lymphocytes was only found in the vaccinated group. An increase in specific IgG2 antibodies was also measured in vaccinated dogs from 2 months after immunization. Additionally, after challenge with L. infantum, the parasite burden was significantly lower in vaccinated dogs than in the control group. These data strongly suggest that this peptide-based vaccine candidate generated cross-protection against zoonotic leishmaniasis by inducing a Th1-type immune response associated with production of specific IgG2 antibodies. This preclinical trial including a peptide-based vaccine against leishmaniasis clearly demonstrates effective protection in a natural host. This approach deserves further investigation to enhance the immunogenicity of the peptides and to consider the possible engineering of a vaccine targeting several Leishmania species.

11.
Front Microbiol ; 10: 450, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930869

RESUMO

Unraveling which proteins and post-translational modifications (PTMs) affect bacterial pathogenesis and physiology in diverse environments is a tough challenge. Herein, we used mass spectrometry-based assays to study protein phosphorylation and glycosylation in Ehrlichia ruminantium Gardel virulent (ERGvir) and attenuated (ERGatt) variants and, how they can modulate Ehrlichia biological processes. The characterization of the S/T/Y phosphoproteome revealed that both strains share the same set of phosphoproteins (n = 58), 36% being overexpressed in ERGvir. The percentage of tyrosine phosphorylation is high (23%) and 66% of the identified peptides are multi-phosphorylated. Glycoproteomics revealed a high percentage of glycoproteins (67% in ERGvir) with a subset of glycoproteins being specific to ERGvir (n = 64/371) and ERGatt (n = 36/343). These glycoproteins are involved in key biological processes such as protein, amino-acid and purine biosynthesis, translation, virulence, DNA repair, and replication. Label-free quantitative analysis revealed over-expression in 31 proteins in ERGvir and 8 in ERGatt. While further PNGase digestion confidently localized 2 and 5 N-glycoproteins in ERGvir and ERGatt, respectively, western blotting suggests that many glycoproteins are O-GlcNAcylated. Twenty-three proteins were detected in both the phospho- and glycoproteome, for the two variants. This work represents the first comprehensive assessment of PTMs on Ehrlichia biology, rising interesting questions regarding ER-host interactions. Phosphoproteome characterization demonstrates an increased versatility of ER phosphoproteins to participate in different mechanisms. The high number of glycoproteins and the lack of glycosyltransferases-coding genes highlight ER dependence on the host and/or vector cellular machinery for its own protein glycosylation. Moreover, these glycoproteins could be crucial to interact and respond to changes in ER environment. PTMs crosstalk between of O-GlcNAcylation and phosphorylation could be used as a major cellular signaling mechanism in ER. As little is known about the Ehrlichia proteins/proteome and its signaling biology, the results presented herein provide a useful resource for further hypothesis-driven exploration of Ehrlichia protein regulation by phosphorylation and glycosylation events. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD012589.

12.
Vet Parasitol X ; 2: 100014, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32904712

RESUMO

Cattle trypanosomosis caused by Trypanosoma vivax is a widely distributed disease in Africa and Latin America. It causes significant losses in the livestock industry and is characterized by fluctuating parasitemia, anemia, fever, lethargy, and weight loss. In this study we evaluated the virulence (capacity to multiply inside the host and to modulate the host response) and pathogenicity (ability to produce disease and/or mortality) patterns of two T. vivax strains (TvMT1 and TvLIEM176) in experimentally-infected sheep and determined the proteins differentially expressed in the proteomes of these two strains. Hematological and clinical parameters were monitored in experimentally-infected versus non-infected sheep for 60 days. All the infected animals developed discernable parasitemia at 3 days post-infection (dpi), and the first parasitemia peak was observed at 6 dpi. The maximum average value of parasitemia was 1.3 × 107 (95% CI, 7.9 × 105-2 × 108) parasites/ml in TvLIEM176-infected animals, and 2.5 × 106 (95% CI, 1.6 × 105-4 × 107) parasites/ml in TvMT1-infected ones. Anemia and clinical manifestations were more severe in the animals infected by TvMT1 strain than in those infected by TvLIEM176. In the proteomic analysis, a total of 29 proteins were identified, of which 14 exhibited significant differences in their expression levels between strains. Proteins with higher expression in TvLIEM176 were: alpha tubulin, beta tubulin, arginine kinase, glucose-regulated protein 78, paraflagellar protein 3, and T-complex protein 1 subunit theta. Proteins with higher expression in TvMT1 were: chaperonin HSP60, T-complex protein 1 subunit alpha, heat shock protein 70, pyruvate kinase, glycerol kinase, inosine-5'-monophosphate dehydrogenase, 73 kDa paraflagellar rod protein, and vacuolar ATP synthase. There was a difference in the virulence and pathogenicity between the T. vivax strains: TvLIEM176 showed high virulence and moderate pathogenicity, whereas TvMT1 showed low virulence and high pathogenicity. The proteins identified in this study are discussed for their potential involvement in strains' virulence and pathogenicity, to be further defined as biomarkers of severity in T. vivax infections.

13.
Vet Parasitol ; 276S: 100014, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-34311938

RESUMO

Cattle trypanosomosis caused by Trypanosoma vivax is a widely distributed disease in Africa and Latin America. It causes significant losses in the livestock industry and is characterized by fluctuating parasitemia, anemia, fever, lethargy, and weight loss. In this study we evaluated the virulence (capacity to multiply inside the host and to modulate the host response) and pathogenicity (ability to produce disease and/or mortality) patterns of two T. vivax strains (TvMT1 and TvLIEM176) in experimentally-infected sheep and determined the proteins differentially expressed in the proteomes of these two strains. Hematological and clinical parameters were monitored in experimentally-infected versus non-infected sheep for 60 days. All the infected animals developed discernable parasitemia at 3 days post-infection (dpi), and the first parasitemia peak was observed at 6 dpi. The maximum average value of parasitemia was 1.3×107 (95% CI, 7.9×105-2×108) parasites/ml in TvLIEM176-infected animals, and 2.5×106 (95% CI, 1.6×105-4×107) parasites/ml in TvMT1-infected ones. Anemia and clinical manifestations were more severe in the animals infected by TvMT1 strain than in those infected by TvLIEM176. In the proteomic analysis, a total of 29 proteins were identified, of which 14 exhibited significant differences in their expression levels between strains. Proteins with higher expression in TvLIEM176 were: alpha tubulin, beta tubulin, arginine kinase, glucose-regulated protein 78, paraflagellar protein 3, and T-complex protein 1 subunit theta. Proteins with higher expression in TvMT1 were: chaperonin HSP60, T-complex protein 1 subunit alpha, heat shock protein 70, pyruvate kinase, glycerol kinase, inosine-5'-monophosphate dehydrogenase, 73kDa paraflagellar rod protein, and vacuolar ATP synthase. There was a difference in the virulence and pathogenicity between the T. vivax strains: TvLIEM176 showed high virulence and moderate pathogenicity, whereas TvMT1 showed low virulence and high pathogenicity. The proteins identified in this study are discussed for their potential involvement in strains' virulence and pathogenicity, to be further defined as biomarkers of severity in T. vivax infections.

14.
Front Immunol ; 9: 778, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29731753

RESUMO

Mononuclear phagocytes (monocytes, dendritic cells, and macrophages) are among the first host cells to face intra- and extracellular protozoan parasites such as trypanosomatids, and significant expansion of macrophages has been observed in infected hosts. They play essential roles in the outcome of infections caused by trypanosomatids, as they can not only exert a powerful antimicrobial activity but also promote parasite proliferation. These varied functions, linked to their phenotypic and metabolic plasticity, are exerted via distinct activation states, in which l-arginine metabolism plays a pivotal role. Depending on the environmental factors and immune response elements, l-arginine metabolites contribute to parasite elimination, mainly through nitric oxide (NO) synthesis, or to parasite proliferation, through l-ornithine and polyamine production. To survive and adapt to their hosts, parasites such as trypanosomatids developed mechanisms of interaction to modulate macrophage activation in their favor, by manipulating several cellular metabolic pathways. Recent reports emphasize that some excreted-secreted (ES) molecules from parasites and sugar-binding host receptors play a major role in this dialog, particularly in the modulation of the macrophage's inducible l-arginine metabolism. Preventing l-arginine dysregulation by drugs or by immunization against trypanosomatid ES molecules or by blocking partner host molecules may control early infection and is a promising way to tackle neglected diseases including Chagas disease, leishmaniases, and African trypanosomiases. The present review summarizes recent knowledge on trypanosomatids and their ES factors with regard to their influence on macrophage activation pathways, mainly the NO synthase/arginase balance. The review ends with prospects for the use of biological knowledge to develop new strategies of interference in the infectious processes used by trypanosomatids, in particular for the development of vaccines or immunotherapeutic approaches.


Assuntos
Arginina/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Proteínas de Protozoários/metabolismo , Tripanossomíase/metabolismo , Animais , Humanos
15.
J Immunol ; 199(5): 1762-1771, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28739879

RESUMO

Arginase activity induction in macrophages is an escape mechanism developed by parasites to cope with the host's immune defense and benefit from increased host-derived growth factor production. We report that arginase expression and activity were induced in macrophages during mouse infection by Trypanosoma musculi, a natural parasite of this host. This induction was reproduced in vitro by excreted/secreted factors of the parasite. A mAb directed to TbKHC1, an orphan kinesin H chain from Trypanosoma brucei, inhibited T. musculi excreted/secreted factor-mediated arginase induction. Anti-TbKHC1 Ab also inhibited T. musculi growth, both in vitro and in vivo. Induction of arginase activity and parasite growth involved C-type lectin receptors, because mannose injection decreased arginase activity induction and parasite load in vitro and in vivo. Accordingly, the parasite load was reduced in mice lacking mannose receptor C-type 1. The T. musculi KHC1 homolog showed high similarity with TbKHC1. Bioinformatics analysis revealed the presence of homologs of this gene in other trypanosomes, including pathogens for humans and animals. Host metabolism dysregulation represents an effective parasite mechanism to hamper the host immune response and modify host molecule production to favor parasite invasion and growth. Thus, this orphan kinesin plays an important role in promoting trypanosome infection, and its neutralization or the lock of its partner host molecules offers promising approaches to increasing resistance to infection and new developments in vaccination against trypanosomiasis.


Assuntos
Antígenos de Protozoários/metabolismo , Arginase/metabolismo , Moléculas de Adesão Celular/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/imunologia , Receptores de Superfície Celular/metabolismo , Trypanosoma/fisiologia , Tripanossomíase/imunologia , Animais , Anticorpos/metabolismo , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Moléculas de Adesão Celular/genética , Células Cultivadas , Feminino , Cinesinas/genética , Lectinas Tipo C/genética , Macrófagos/parasitologia , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Carga Parasitária , Filogenia , Receptores de Superfície Celular/genética , Vacinação
16.
Gut Microbes ; 8(5): 413-427, 2017 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-28586253

RESUMO

In humans, sleeping sickness (i.e. Human African Trypanosomiasis) is caused by the protozoan parasites Trypanosoma brucei gambiense (Tbg) in West and Central Africa, and T. b. rhodesiense in East Africa. We previously showed in vitro that Tbg is able to excrete/secrete a large number of proteins, including Translationally Controlled Tumor Protein (TCTP). Moreover, the tctp gene was described previously to be expressed in Tbg-infected flies. Aside from its involvement in diverse cellular processes, we have investigated a possible alternative role within the interactions occurring between the trypanosome parasite, its tsetse fly vector, and the associated midgut bacteria. In this context, the Tbg tctp gene was synthesized and cloned into the baculovirus vector pAcGHLT-A, and the corresponding protein was produced using the baculovirus Spodoptera frugicola (strain 9) / insect cell system. The purified recombinant protein rTbgTCTP was incubated together with bacteria isolated from the gut of tsetse flies, and was shown to bind to 24 out of the 39 tested bacteria strains belonging to several genera. Furthermore, it was shown to affect the growth of the majority of these bacteria, especially when cultivated under microaerobiosis and anaerobiosis. Finally, we discuss the potential for TCTP to modulate the fly microbiome composition toward favoring trypanosome survival.


Assuntos
Antibacterianos/metabolismo , Bactérias/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei gambiense/genética , Moscas Tsé-Tsé/microbiologia , Animais , Bactérias/crescimento & desenvolvimento , Biomarcadores Tumorais/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Interações Hospedeiro-Parasita , Proteínas de Protozoários/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Tumoral 1 Controlada por Tradução
17.
Artigo em Inglês | MEDLINE | ID: mdl-29354598

RESUMO

The tropical bont tick, Amblyomma variegatum, is a tick species of veterinary importance and is considered as one of major pest of ruminants in Africa and in the Caribbean. It causes direct skin lesions, transmits heartwater, and reactivates bovine dermatophilosis. Tick saliva is reported to affect overall host responses through immunomodulatory and anti-inflammatory molecules, among other bioactive molecules. The general objective of this study was to better understand the role of saliva in interaction between the Amblyomma tick and the host using cellular biology approaches and proteomics, and to discuss its impact on disease transmission and/or activation. We first focused on the immuno-modulating effects of semi-fed A. variegatum female saliva on bovine peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages in vitro. We analyzed its immuno-suppressive properties by measuring the effect of saliva on PBMC proliferation, and observed a significant decrease in ConA-stimulated PBMC lymphoproliferation. We then studied the effect of saliva on bovine macrophages using flow cytometry to analyze the expression of MHC-II and co-stimulation molecules (CD40, CD80, and CD86) and by measuring the production of nitric oxide (NO) and pro- or anti-inflammatory cytokines. We observed a significant decrease in the expression of MHC-II, CD40, and CD80 molecules, associated with decreased levels of IL-12-p40 and TNF-α and increased level of IL-10, which could explain the saliva-induced modulation of NO. To elucidate these immunomodulatory effects, crude saliva proteins were analyzed using proteomics with an Orbitrap Elite mass spectrometer. Among the 336 proteins identified in A. variegatum saliva, we evidenced bioactive molecules exhibiting anti-inflammatory, immuno-modulatory, and anti-oxidant properties (e.g., serpins, phospholipases A2, heme lipoprotein). We also characterized an intriguing ubiquitination complex that could be involved in saliva-induced immune modulation of the host. We propose a model for the interaction between A. variegatum saliva and host immune cells that could have an effect during tick feeding by favoring pathogen dissemination or activation by reducing the efficiency of host immune response to the corresponding tick-borne diseases.


Assuntos
Fatores Imunológicos/metabolismo , Ixodidae , Leucócitos Mononucleares/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Saliva/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Animais , Antígenos CD/análise , Bovinos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/análise , Antígenos de Histocompatibilidade Classe II/análise , Leucócitos Mononucleares/imunologia , Macrófagos/imunologia , Óxido Nítrico/análise
18.
Infect Genet Evol ; 45: 426-433, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27732884

RESUMO

Macrophages exhibit multifunctional activity and play a central role in the response to infectious agents. It is commonly accepted that the plasticity of the response of macrophages depends on the type of stimuli. Here we re-evaluate whether the macrophage response is only dependent on the stimulus. We analyzed the transcriptomic profile of monocyte-derived macrophages (MDMs) that were activated with several pathogens and multiple in vitro-stimulations. The transcriptomic data were normalized using matched-pair analysis. Further analysis showed a clustering association with (i) specific signatures of the infectious agent and its strategy as well as (ii) a preponderance of MDM overall responses related to individuals. Currently, the null hypothesis H0 is that the innate MDM response is globally associated with the pathogen. Our results reveal that the global innate MDM response is intrinsically and predominantly associated with the individual. Thus, the hypothesis is supported or negated depending on the transcriptomic analytical level. AUTHOR SUMMARY: In modern medicine, diagnosis is based on objective criteria. Scientists are focused on the common denominators indicative of an infection. Analytical studies are based on this oriented approach, which defines the null hypothesis H0: the host immune response depends on the stimulus. We observe that the macrophage response to a given pathogen represents <0.4% of the expressed transcripts. The events to which the remaining 99.6% of transcripts are associated remain unclear. We find that 10.3% of the genes modulated during the response to the stimulus are related to the individual. They represent the overall response of the host, which integrates two responses: one associated with the stimulus and the other associated with the individual.


Assuntos
Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/imunologia , Transcriptoma/genética , Transcriptoma/imunologia , Células Cultivadas , Análise por Conglomerados , Perfilação da Expressão Gênica , Humanos , Análise de Componente Principal
19.
Infect Genet Evol ; 45: 320-331, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27688033

RESUMO

Trypanosomes are bloodstream protozoan parasites, which are pathogens of veterinary and medical importance. Several mammalian species, including humans, can be infected by different species of the genus Trypanosoma (T. congolense, T. evansi, T. brucei, T. vivax) exhibiting more or less virulent and pathogenic phenotypes. A previous screening of the excreted-secreted proteins of T. congolense demonstrated an overexpression of several proteins correlated with the virulence and pathogenicity of the strain. Of these proteins, calreticulin (CRT) has shown differential expression between two T. congolense strains with opposite infectious behavior and has been selected as a target molecule based on its immune potential functions in parasitic diseases. In this study, we set out to determine the role of T. congolense calreticulin as an immune target. Immunization of mice with recombinant T. congolense calreticulin induced antibody production, which was associated with delayed parasitemia and increased survival of the challenged animal. These results strongly suggest that some excreted-secreted proteins of T. congolense are a worthwhile target candidate to interfere with the infectious process.


Assuntos
Calreticulina/imunologia , Calreticulina/metabolismo , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/metabolismo , Trypanosoma congolense/genética , Animais , Calreticulina/química , Calreticulina/genética , Bovinos , Clonagem Molecular , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Vacinas Protozoárias , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Trypanosoma congolense/imunologia , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/veterinária
20.
Front Immunol ; 7: 212, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303406

RESUMO

The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas' disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts' immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host's immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite-host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites-hosts-vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA