Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; : 1-14, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849972

RESUMO

In the framework of this study, six fungal isolates which demonstrated a high capability for biodegrading iodosulphuron-methyl sodium as well as herbicidal ionic liquids based on this herbicide were isolated from different soil samples. The isolates were identified based on the ITS region, whereas biodegradation residues were determined based on LC-MS/MS. Depending on the isolate, the half-lives values of the biodegraded herbicide or herbicidal ionic liquid ranged significantly from just 1.25 days to more than 40 days. The research findings unveiled that the structure of cations is a central limiting factor affecting fungal growth and herbicide transformation in case of ionic liquids. The length of the alkyl chain has been identified as the primary driver of herbicide toxicity, emphasizing the importance of structural factors in herbicide design. In cases when dodecyl(2-hydroxyethyl)dimethyl cation was used, its biodegradation ranged from 0 to approx. 20% and the biodegradability of the iodosulfuron-methyl was notably limited for the majority of the studied isolates. This knowledge provides guidance for development and selection of herbicides with reduced environmental impact. This study highlights the ecological importance of soil fungi, their potential role in herbicide biodegradation, the influence of cations on fungal growth and herbicide transformation, and the structural factors governing herbicide toxicity. Further research in these areas may lead to more efficient and environmentally friendly approaches to herbicide management.

2.
Sci Total Environ ; 922: 171062, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38401717

RESUMO

The following research provides novel and relevant insights into potential environmental consequences of combination of various organic cations with commercial systemic herbicide (dicamba), in accordance with a 'herbicidal ionic liquids' (HILs) strategy. Toxicity assays of five dicamba-based HILs comprising different hydrophobic and hydrophilic cations, namely choline [CHOL][DIC], ethyl betainate [BETC2][DIC], decyl betainate [BETC10][DIC], hexadecyl betainate [BETC16][DIC] and didecyldimethylammonium [DDA][DIC]), have been tested towards bacteria (Pseudomonas putida, Escherichia coli, Bacillus subtilis), algae (Chlorella vulgaris), fresh and marine water crustaceans (Daphnia magna, Artemia franciscana). The structure of respective substituents in the cation emerged as a decisive determinant of toxicity in the case of tested species. In consequence, small ions of natural origin ([CHOL] and [BETC2]) demonstrated toxicity numerous orders of magnitude lower compared to fully synthetic [DDA]. These results emphasize the role of cations' hydrophobicity, as well as origin, in the observed acute toxic effect. Time-dependent toxicity assays also indicated that betaine-type cations comprising an ester bond can rapidly transform into less harmful substances, which can generally result in a reduction in toxicity by even several orders of magnitude. Nonetheless, these findings challenge the concept of ionic liquids with herbicidal activity and give apparent parallels to adjuvant-dependent toxicity issues recently noted in typical herbicidal formulations.


Assuntos
Chlorella vulgaris , Herbicidas , Líquidos Iônicos , Pseudomonas putida , Herbicidas/toxicidade , Herbicidas/química , Dicamba/química , Líquidos Iônicos/toxicidade , Líquidos Iônicos/química , Cátions/química
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 297: 122748, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37080050

RESUMO

In the presented work, chitosan hydrogel modified with lanthanum was obtained for the first time. The hydrogel was used as a carrier in the controlled release of epigallocatechin gallate. The work proved the effectiveness of drug sorption by hydrogel and controlled release in simulated body fluids. The drug was released slowly and in a controlled manner from the carrier. The research techniques used in this work (FT-IR spectroscopy and imaging, Raman spectroscopy, SEM/EDS) allowed to confirm the successful retention of EGCG on the hydrogel surface. On the basis of the EDS mapping, it was possible to confirm the even distribution of the lanthanum ions. Using FT-IR imaging, we verified that the drug was evenly distributed on the entire surface of the prepared material. The antifungal effectiveness of the material has been proven on several types of fungi. The research proved that the prepared material is capable of long-term release of the active substance and has antifungal properties. As a result, the prepared material can be successfully used as an implantable hydrogel or a coating in, e.g. titanium implants.


Assuntos
Quitosana , Quitosana/química , Hidrogéis/química , Lantânio , Preparações de Ação Retardada , Análise Espectral Raman , Espectroscopia de Infravermelho com Transformada de Fourier , Antifúngicos/farmacologia , Sistemas de Liberação de Medicamentos , Interações Medicamentosas
4.
Chemosphere ; 316: 137717, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36610512

RESUMO

The applicability of herbicidal ionic liquids (HILs) as an alternative form of herbicides is currently evaluated. Yet, the available research is lacking information on the behaviour of herbicidal ionic liquids upon addition to the environment, i.e., if cations and anions act as separate moieties or remain an ionic salt. Hence, we tested degradation of five HILs with the glyphosate anion, their bioavailability in soil, toxicity towards microorganisms, impact on the biodiversity and the abundance of phnJ and soxA genes. The cations were proven to be slightly or moderately toxic. The properties of cations determined the properties of the whole formulation, which might suggest that cations and anion act as the independent mixture of ions. The mineralisation efficiencies were in the range of 15-53%; however, in the case of cations (except non-toxic choline), only 13-20% were bioavailable for degradation. The hydrophobic cations were proven to be highly sorbed, while the anion was readily available for microbial degradation regardless of its counterion. The approach to enrich test samples with isolated microorganisms specialised in glyphosate degradation resulted in higher degradation efficiencies, yet not high enough to mitigate the negative impact of cations. In addition, increased activity of enzymes participating in glyphosate degradation was observed. In the view of obtained results, the use of cationic surfactants in HILs structure is not recommended, as sorption was shown to be determining factor in HILs degradation efficiency. Moreover, obtained results indicate that corresponding ions in HILs might act as separate moieties in the environment.


Assuntos
Herbicidas , Líquidos Iônicos , Ânions/química , Cátions/química , Herbicidas/toxicidade , Herbicidas/química , Líquidos Iônicos/toxicidade , Líquidos Iônicos/química , Microbiologia do Solo , Glifosato
5.
Chemosphere ; 313: 137236, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36403813

RESUMO

Information on biodegradation kinetics of biodiesel fuels is a key aspect in risk and impact assessment practice and in selection of appropriate remediation strategies. Unfortunately, this information is scattered, while factors influencing variability in biodegradation rates are still not fully understood. Therefore, we systematically reviewed 32 scientific literature sources providing 142 biodegradation and 56 mineralization half-lives of diesel and biodiesel fuels in various experimental systems. The analysis focused on the variability in half-lives across fuels and experimental conditions, reporting sets of averaged half-life values and their statistical uncertainty. Across all data points, biodegradation half-lives ranged from 9 to 62 days, and were 2-5.5 times shorter than mineralization half-lives. Across all fuels, biodegradation and mineralization half-lives were 2.5-8.5 times longer in terrestrial systems when compared to aquatic systems. The half-lives were generally shorter for blends with increasing biodiesel content, although differences in number of data points from various experiments masked differences in half-lives between different fuels. This in most cases resulted in lack of statistically significant effects of the type of blends and experimental system on biodegradation half-lives. Our data can be used for improved characterization of risks and impacts of biodiesel fuels in aerobic aquatic and terrestrial environments, while more experiments are required to quantify biodegradation kinetics in anaerobic conditions. Relatively high biodegradability of biodiesel may suggest that passive approaches to degrade and dissipate contaminants in situ, like monitored natural attenuation, may be appropriate remediation strategies for biodiesel fuels.


Assuntos
Biocombustíveis , Gasolina , Meia-Vida , Cinética , Biodegradação Ambiental
6.
Molecules ; 26(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34361550

RESUMO

Efficient use of herbicides for plant protection requires the application of auxiliary substances such as surfactants, stabilizers, wetting or anti-foaming agents, and absorption enhancers, which can be more problematic for environment than the herbicides themselves. We hypothesized that the combination of sulfonylurea (iodosulfuron-methyl) anion with inexpensive, commercially available quaternary tetraalkylammonium cations could lead to biologically active ionic liquids (ILs) that could become a convenient and environment-friendly alternative to adjuvants. A simple one-step synthesis allowed for synthesizing iodosulfuron-methyl based ILs with high yields ranging from 88 to 96% as confirmed by UV, FTIR, and NMR. The obtained ILs were found to possess several favorable properties compared to the currently used sodium salt iodosulfuron-methyl, such as adjustable hydrophobicity (octanol-water partition coefficient) and enhanced stability in aqueous solutions, which was supported by molecular calculations showing cation-anion interaction energies. In addition, soil mobility and volatility of ILs were more beneficial compared to the parental herbicide. Herbicidal activity tests toward oil-seed rape and cornflower revealed that ILs comprising at least one alkyl chain in the decyl to octadecyl range had similar or better efficacy compared to the commercial preparation without addition of any adjuvant. Furthermore, results of antimicrobial activity indicated that they were practically harmless or slightly toxic toward model soil microorganisms such as Pseudomonas putida and Bacillus cereus.


Assuntos
Anti-Infecciosos/química , Herbicidas/química , Líquidos Iônicos/química , Sulfonamidas/química , Compostos de Sulfonilureia/química , Tensoativos/química , Anti-Infecciosos/farmacologia , Bacillus cereus/crescimento & desenvolvimento , Herbicidas/farmacologia , Pseudomonas putida/crescimento & desenvolvimento , Compostos de Sulfonilureia/farmacologia
7.
Ecotoxicol Environ Saf ; 208: 111595, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396116

RESUMO

Modern agricultural practices are often based on the use of mixtures of specific herbicides to achieve efficient crop protection. The major drawbacks of commercial herbicidal formulations include the necessity to incorporate toxic surfactants and high volatility of active substances. Transformation of herbicides into herbicidal ionic liquids (HILs) seems to be a promising alternative which allows to almost completely reduce volatility due to ionic interactions. In the scope of this research, we transformed (2-methyl-4-chlorophenoxy)acetic acid (MCPA) into a quaternary ester (esterquat) with the use of derivatives of 2-dimethylaminoethanol. The obtained esterquats were later coupled with (±)-2-(4-chloro-2-methylphenoxy)propionic acid (MCPP) in the form of an anion. The combination of MCPA and MCPA is commonly applied in the UK, EU countries and also in the USA to increase the spectrum of targeted weed species. In the framework of this study, novel HILs with an esterquat moiety incorporating a long alkyl chain (C8, C9, C10, C11, C12, C14) were prepared and characterized in terms of basic physicochemical properties (solubility and volatility) as well as biodegradability. Their phytotoxicity was assessed towards cornflower (Centaurea cyanus) as a model weed and maize (Zea mays) as a crop plant. The presence of the esterquat cation contributed to satisfactory solubility in water and other low polar solvents, which eliminates the need to add exogenous adjuvants. Further experiments indicated that the tested HILs stimulated the germination stage of maize and maintained high herbicidal activity towards cornflower. No significant differences in terms of properties were observed in case of HILs which included alkyl substituents with an odd number of carbon atoms. Future studies should be focused on structural modifications in order to improve the biodegradability as well as field studies for evaluation of commercial applications.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético/análogos & derivados , Ácido 2-Metil-4-clorofenoxiacético/toxicidade , Herbicidas/toxicidade , Zea mays/fisiologia , Ácido 2-Metil-4-clorofenoxiacético/química , Ânions , Biodegradação Ambiental , Cátions , Centaurea , Herbicidas/química , Líquidos Iônicos/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA