Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Monoclon Antib Immunodiagn Immunother ; 42(4): 145-149, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37589992

RESUMO

Nucleolin (NCL) is a multifunctional phosphoprotein that is mainly localized in the nucleolus, but it is also found in the nucleoplasm, cytoplasm, and cell membrane. The principal functions of NCL involve DNA and RNA metabolism, gene transcription and translation, ribosome biogenesis, and mRNA stability. It was also reported that the localization of human NCL (hNCL) is related to tumor malignancy. Therefore, analyzing the cellular dynamics of NCL could be useful. In this article, we describe rat monoclonal antibody (mAb) 6F9A6 that was generated against a hNCL peptide. This mAb recognizes endogenous human, monkey, dog, and mouse NCL and was shown to be useful in immunofluorescence staining, immunoprecipitation, and immunoblotting experiments in several cancer cell lines. We anticipate that the mAb 6F9A6 will be useful for functional analyses of hNCL in cancer cells.


Assuntos
Anticorpos Monoclonais , Fosfoproteínas , Ratos , Humanos , Camundongos , Animais , Cães , Proteínas de Ligação a RNA , Linhagem Celular , Nucleolina
2.
Biochem Biophys Res Commun ; 663: 71-77, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37119768

RESUMO

Oxidative metabolism of rhododendrol (RD), a skin-whitening ingredient, by tyrosinase has caused leukoderma in a certain population of Japanese consumers. Toxic RD metabolites and reactive oxygen species are proposed causes for the melanocyte death. However, the mechanism by which reactive oxygen species are produced during RD metabolism remains elusive. Some phenolic compounds are known to act as suicide substrates for tyrosinase, resulting in release of a copper atom and hydrogen peroxide during its inactivation. We hypothesized that RD may be a suicide substrate for tyrosinase and that the released copper atom may be responsible for the melanocyte death through hydroxyl radical production. In line with this hypothesis, human melanocytes incubated with RD showed an irreversible decrease in tyrosinase activity and underwent cell death. A copper chelator, d-penicillamine, markedly suppressed the RD-dependent cell death without significantly affecting the tyrosinase activity. Peroxide levels in RD-treated cells were not affected by d-penicillamine. Given the unique enzymatic properties of tyrosinase, we conclude that RD acted as a suicide substrate and resulted in release of a copper atom and hydrogen peroxide, which would collectively impair melanocyte viability. These observations further imply that copper chelation may alleviate chemical leukoderma caused by other compounds.


Assuntos
Hipopigmentação , Monofenol Mono-Oxigenase , Humanos , Monofenol Mono-Oxigenase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cobre/metabolismo , Penicilamina/efeitos adversos , Penicilamina/metabolismo , Peróxido de Hidrogênio/metabolismo , Melanócitos/metabolismo , Hipopigmentação/induzido quimicamente , Hipopigmentação/metabolismo , Quelantes/farmacologia
3.
J Immunol Methods ; 510: 113358, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36126779

RESUMO

Ferroptosis, a type of iron-dependent necrotic cell death, is specifically associated with increased lipid peroxidation. The dysfunction of the glutathione (GSH) production via the starvation of cysteine or the inhibition of phospholipid hydroperoxide glutathione peroxidase (GPX4) typically results in the accumulation of lipid peroxidation products and, consequently, the development of ferroptosis. We recently reported on the production of a rat monoclonal antibody, referred to as FerAb, against mouse-derived Hepa 1-6 cells that had been cultivated in cystine-deprived medium. Immunocytological analyses by means of fluorescence microscopy revealed that FerAb binds to fixed ferroptotic cells regardless of the species from which they were obtained, but not to apoptotic cells. We report herein on an in-depth characterization of the reactivity of FerAb with respect to unfixed cells by means of flow cytometry. The binding of FerAb to the cells was stimulated by incubating the cells in cystine deprived culture medium or treatment with RSL3, a GPX4 inhibitor, while treatment with staurosporine, an apoptosis inducer, had no effect on its binding to the cells. Supplementation with ferrostatin-1, a ferroptosis inhibitor, effectively suppressed the binding of FerAb to cells that had been cultivated in cystine-deprived medium or treated with RSL3, further confirming the specific binding of FerAb to ferroptotic cells. Thus, FerAb combined with a flow cytometry can be used to distinguish ferroptotic cells from living cells or apoptotic cells without the need for fixation. Applications of this combined technique will enable the quantitative evaluation of ferroptotic cells under a variety of patho-physiological conditions and will contribute to our understanding of the roles of ferroptosis in the body as well as cultured cells.


Assuntos
Ferroptose , Animais , Anticorpos Monoclonais/farmacologia , Morte Celular , Cisteína , Cistina , Citometria de Fluxo , Glutationa/metabolismo , Ferro , Camundongos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Ratos , Estaurosporina/farmacologia
4.
J Clin Biochem Nutr ; 71(1): 48-54, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35903611

RESUMO

Glutathione (GSH) is synthesized from three amino acids and the overall process is highly dependent on the availability of l-cysteine (l-Cys). GSH serves as an essential cofactor for glutathione peroxidase 4 (Gpx4), which reduces phospholipid hydroperoxides. The inactivation of Gpx4 or an insufficient supply of l-Cys results in the accumulation of lipid hydroperoxides, eventually leading to iron-dependent cell death, ferroptosis. In this study, we investigated the anti-ferroptotic properties of d-cysteine (d-Cys) under conditions of dysfunction in cystine transporter, xCT. l-Cys supplementation completely rescued ferroptosis that had been induced by the erastin-mediated inhibition of xCT in Hepa 1-6 cells. Upon d-Cys supplementation, the erastin-treated cells remained completely viable for periods of up to 24 h but eventually died after 48 h. d-Cys supplementation suppressed the production of lipid peroxides, thereby ferroptosis. The addition of d-Cys sustained intracellular Cys and GSH levels to a certain extent. When Hepa 1-6 cells were treated with a combination of buthionine sulfoximine and erastin, the anti-ferroptotic effect of d-Cys was diminished. These collective results indicate that, although d-Cys is not the direct source of GSH, d-Cys supplementation protects cells from ferroptosis in a manner that is dependent on GSH synthesis via stimulating the uptake of l-Cys.

5.
Biochem Biophys Res Commun ; 621: 32-38, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-35809345

RESUMO

Peroxiredoxin 4 (Prdx4) is responsible for the oxidative folding of new proteins that are synthesized in the endoplasmic reticulum (ER). It has recently been suggested that increased ER stress is associated with neurodegenerative diseases, including Alzheimer's disease. Prdx4 is widely distributed throughout the brain, and is also expressed in hippocampal neurons and oligodendrocytes, suggesting that it is associated with learning and memory. We previously established Prdx4-knockout (KO) mice but did not examine the behavioral phenotypes. In the present study, we report on the learning and memory abilities of Prdx4-KO mice based on Morris water maze and the Y-maze tests. The findings indicate that Prdx4-KO mice showed a lower spatial memory ability in both tests. In contrast, the results of the open field test indicated that locomotor activity is significantly increased in Prdx4-KO mice. We then performed mRNA analyses of the brains of Prdx4-KO mice and found an increased expression of genes related to the ER-associated degradation (ERAD) mechanism, which is an important protein quality control system for the maintenance of ER homeostasis. Finally, proteomic analyses of the brains of Prdx4-KO mice showed an aberrant expression in the proteins, which have been suggested to be related to calcium homeostasis and synaptogenesis in neurons. Our collective results suggest that the Prdx4 ablation perturbs oxidative protein folding in the ER, thus leading to aberrant ER homeostasis in neuronal cells, ultimately leading to impaired spatial memory formation.


Assuntos
Aprendizagem em Labirinto , Memória , Peroxirredoxinas , Proteômica , Animais , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Camundongos , Camundongos Knockout , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo
6.
Life Sci ; 304: 120694, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35679914

RESUMO

AIMS: Acetaminophen (APAP) is a relatively safe analgesic drug, but overdosing can cause acute liver failure. Ingested APAP is detoxified by metabolic conversion through conjugation reactions with glucuronate, sulfate, or glutathione (GSH). The consumption of GSH through conjugation as well as mitochondrial dysfunction is considered to be responsible for the increased susceptibility to APAP-induced hepatotoxicity. Compared to wild-type (WT) mice, Akr1a-knockout (KO) mice are vulnerable to developing hepatotoxicity due to the fact that ascorbate synthesis is attenuated. We used such KO mice to investigate how these conjugation reactions are involved in the hepatotoxicity caused by an overdose of APAP under ascorbate-deficient conditions. MAIN METHODS: APAP (400 mg/kg) was intraperitoneally administered to WT mice and KO mice. In addition to histological and blood biochemical analyses, metabolites in the liver, blood plasma, and urine were measured at several time points by liquid chromatography-mass spectrometry. KEY FINDINGS: Liver damage occurred earlier in the KO mice than in the WT mice. The levels of APAP-Cys, a final metabolite of GSH-conjugated APAP, as well as glucuronidated APAP and sulfated APAP were all higher in the KO mice compared to the WT mice. Treatment of the APAP-administered KO mice with N-acetylcysteine or supplementation of ascorbate suppressed the conjugation reactions at 6 h after APAP had been administrated, which mitigated the degree of liver damage. SIGNIFICANCE: An ascorbate deficiency coordinately stimulates conjugation reactions of APAP, which, combined with the mitochondrial damage caused by APAP metabolites, collectively results in the aggravation of the acute liver failure.


Assuntos
Acetaminofen , Aldeído Redutase , Doença Hepática Induzida por Substâncias e Drogas , Acetaminofen/farmacocinética , Acetaminofen/toxicidade , Aldeído Redutase/deficiência , Aldeído Redutase/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Glutationa/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Cells ; 11(10)2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35626640

RESUMO

Ferroptosis, a type of iron-dependent necrotic cell death, is triggered by the accumulation of excessive lipid peroxides in cells. Glutathione (GSH), a tripeptide redox molecule that contains a cysteine (Cys) unit in the center, plays a pivotal role in protection against ferroptosis. When the transsulfuration pathway is activated, the sulfur atom of methionine (Met) is utilized to generate Cys, which can then suppress Cys-starvation-induced ferroptosis. In the current study, we cultured HeLa cells in Met- and/or cystine (an oxidized Cys dimer)- deprived medium and investigated the roles of Met in ferroptosis execution. The results indicate that, in the absence of cystine or Met, ferroptosis or cell cycle arrest, respectively, occurred. Contrary to our expectations, however, the simultaneous deprivation of both Met and cystine failed to induce ferroptosis, although the intracellular levels of Cys and GSH were maintained at low levels. Supplementation with S-adenosylmethionine (SAM), a methyl group donor that is produced during the metabolism of Met, caused the cell cycle progression to resume and lipid peroxidation and the subsequent induction of ferroptosis was also restored under conditions of Met/cystine double deprivation. DNA methylation appeared to be involved in the resumption in the SAM-mediated cell cycle because its downstream metabolite S-adenosylhomocysteine failed to cause either cell cycle progression or ferroptosis to be induced. Taken together, our results suggest that elevated lipid peroxidation products that are produced during cell cycle progression are involved in the execution of ferroptosis under conditions of Cys starvation.


Assuntos
Ferroptose , Ciclo Celular , Cisteína/metabolismo , Cistina/metabolismo , Glutationa/metabolismo , Células HeLa , Humanos , Metionina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , S-Adenosilmetionina
8.
Antioxidants (Basel) ; 11(3)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35326151

RESUMO

Superoxide is a primary oxygen radical that is produced when an oxygen molecule receives one electron. Superoxide dismutase (SOD) plays a primary role in the cellular defense against an oxidative insult by ROS. However, the resulting hydrogen peroxide is still reactive and, in the presence of free ferrous iron, may produce hydroxyl radicals and exacerbate diseases. Polyunsaturated fatty acids are the preferred target of hydroxyl radicals. Ferroptosis, a type of necrotic cell death induced by lipid peroxides in the presence of free iron, has attracted considerable interest because of its role in the pathogenesis of many diseases. Radical electrons, namely those released from mitochondrial electron transfer complexes, and those produced by enzymatic reactions, such as lipoxygenases, appear to cause lipid peroxidation. While GPX4 is the most potent anti-ferroptotic enzyme that is known to reduce lipid peroxides to alcohols, other antioxidative enzymes are also indirectly involved in protection against ferroptosis. Moreover, several low molecular weight compounds that include α-tocopherol, ascorbate, and nitric oxide also efficiently neutralize radical electrons, thereby suppressing ferroptosis. The removal of radical electrons in the early stages is of primary importance in protecting against ferroptosis and other diseases that are related to oxidative stress.

9.
Nitric Oxide ; 115: 34-43, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34329739

RESUMO

Ferroptosis is a type of iron-dependent necrotic cell death, which is typically triggered by the depletion of intracellular glutathione (GSH), which is associated with increased lipid peroxidation. Nitric oxide (NO) is a highly reactive gaseous radical mediator with anti-oxidation properties that terminates lipid peroxidation reactions. In the current study, we report the anti-ferroptotic action of NOC18, an NO donor that spontaneously releases NO, in cells under various ferroptotic conditions in vitro. Our results indicate that, when mouse hepatoma Hepa 1-6 cells are incubated with NOC18, cell death induced by various ferroptotic stimuli such as cysteine (Cys) starvation, the inhibition of glutathione peroxidase 4 (GPX4) and treatment with tertiary-butyl hydroperoxide (TBHP) is significantly reduced. Treatment with NOC18 failed to improve the decrease in the levels of Cys or GSH and the accumulation of ferrous iron upon ferroptotic stimuli. The fluorescent intensity of C11-BODIPY581/591, a probe that is used to detect lipid peroxidation products, was increased somewhat by treatment with NOC18 under conditions of Cys starvation, and the accumulation of lipid peroxidation end-products, as evidenced by the levels of 4-hydroxynonenal, were effectively suppressed. The pre-incubation of TBHP with NOC7, a short-lived NO donor completely eliminated its ability to trigger ferroptosis. These collective results indicate that NO exerts a cytoprotective action against various ferroptotic stimuli by aborting the lipid peroxidation chain reaction.


Assuntos
Ferroptose/efeitos dos fármacos , Óxido Nítrico/farmacologia , Substâncias Protetoras/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas
10.
Free Radic Biol Med ; 174: 12-27, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34324979

RESUMO

The knockout (KO) of the cystine transporter xCT causes ferroptosis, a type of iron-dependent necrotic cell death, in mouse embryonic fibroblasts, but this does not occur in macrophages. In this study, we explored the gene that supports cell survival under a xCT deficiency using a proteomics approach. Analysis of macrophage-derived peptides that were tagged with iTRAQ by liquid chromatography-mass spectrometry revealed a robust elevation in the levels of carnosine dipeptidase II (CNDP2) in xCT KO macrophages. The elevation in the CNDP2 protein levels was confirmed by immunoblot analyses and this elevation was accompanied by an increase in hydrolytic activity towards cysteinylglycine, the intermediate degradation product of glutathione after the removal of the γ-glutamyl group, in xCT KO macrophages. Supplementation of the cystine-free media of Hepa1-6 cells with glutathione or cysteinylglycine extended their survival, whereas the inclusion of bestatin, an inhibitor of CNDP2, counteracted the effects of these compounds. We established CNDP2 KO mice by means of the CRISPR/Cas9 system and found a decrease in dipeptidase activity in the liver, kidney, and brain. An acetaminophen overdose (350 mg/kg) showed not only aggravated hepatic damage but also renal injury in the CNDP2 KO mice, which was not evident in the wild-type mice that were receiving the same dose. The aggravated renal damage in the CNDP2 KO mice was consistent with the presence of abundant levels of CNDP2 in the kidney, the organ prone to developing ferroptosis. These collective data imply that cytosolic CNDP2, in conjugation with the removal of the γ-glutamyl group, recruits Cys from extracellular GSH and supports redox homeostasis of cells, particularly in epithelial cells of proximal tubules that are continuously exposed to oxidative insult from metabolic wastes that are produced in the body.


Assuntos
Carnosina , Dipeptidases , Animais , Cisteína , Dipeptidases/genética , Fibroblastos , Glutationa , Camundongos
11.
Metabolites ; 11(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073440

RESUMO

We provide an overview of the physiological roles of aldehyde reductase (AKR1A) and also discuss the functions of aldose reductase (AKR1B) and other family members when necessary. Many types of aldehyde compounds are cytotoxic and some are even carcinogenic. Such toxic aldehydes are detoxified via the action of AKR in an NADPH-dependent manner and the resulting products may exert anti-diabetic and anti-tumorigenic activity. AKR1A is capable of reducing 3-deoxyglucosone and methylglyoxal, which are reactive intermediates that are involved in glycation, a non-enzymatic glycosylation reaction. Accordingly, AKR1A is thought to suppress the formation of advanced glycation end products (AGEs) and prevent diabetic complications. AKR1A and, in part, AKR1B are responsible for the conversion of d-glucuronate to l-gulonate which constitutes a process for ascorbate (vitamin C) synthesis in competent animals. AKR1A is also involved in the reduction of S-nitrosylated glutathione and coenzyme A and thereby suppresses the protein S-nitrosylation that occurs under conditions in which the production of nitric oxide is stimulated. As the physiological functions of AKR1A are currently not completely understood, the genetic modification of Akr1a could reveal the latent functions of AKR1A and differentiate it from other family members.

12.
Biochem Biophys Rep ; 26: 100942, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33665378

RESUMO

Nitric oxide (NO) reacts with superoxide to produce peroxynitrite, a potent oxidant and reportedly exerts cytotoxic action. Herein we validated the hypothesis that interaction of NO with superoxide exerts protection against superoxide toxicity using macrophages from mice with a knockout (KO) of inducible NO synthase (NOS2) and superoxide dismutase 1 (SOD1), either individually or both. While no difference was observed in viability between wild-type (WT) and NOS2KO macrophages, SOD1KO and SOD1-and NOS2-double knockout (DKO) macrophages were clearly vulnerable and cell death was observed within four days. A lipopolysaccharide (LPS) treatment induced the formation of NOS2, which resulted in NO production in WT and these levels were even higher in SOD1KO macrophages. The viability of the DKO macrophages but not SOD1KO macrophages were decreased by the LPS treatment. Supplementation of NOC18, a NO donor, improved the viability of SOD1KO and DKO macrophages both with and without the LPS treatment. The NOS2 inhibitor nitro-l-arginine methyl ester consistently decreased the viability of LPS-treated SOD1KO macrophages but not WT macrophages. Thus, in spite of the consequent production of peroxynitrite in LPS-stimulated macrophages, the coordinated elevation of NO appears to exert anti-oxidative affects by coping with superoxide cytotoxicity upon conditions of inflammatory stimuli.

13.
J Nutr Biochem ; 91: 108604, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33549889

RESUMO

Aldehyde reductase encoded by the Akr1a gene catalyzes the NADPH-dependent reduction of a variety of aldehyde compounds, and it plays a role in the biosynthesis of ascorbic acid (AsA) by converting D-glucuronate to L-gulonate. Although supplementing drinking water with AsA (1.5 mg/mL) ameliorates the fertility of Akr1a-/- (KO) female mice, litter sizes in the KO mice are typically smaller than those for Akr1a+/+ (WT) mice, and about one-third of the neonates have a reduced stature. Half of the neonates in the smallest, developmentally retarded group died before weaning, and the remaining half (less than 6 g in weight) also barely grew to adulthood. While no difference was found in the number of fetuses between the KO and WT mice at 14.5-embryonic days, the sizes of the KO fetuses had already diverged. Among the organs of these retarded KO neonates at 30 d, the spleen and thymus were characteristically small. While an examination of spleen cells showed the normal proportion of immune cells, apoptotic cell death was increased in the thymus, which would lead to thymic atrophy in the retarded KO neonates. Plasma AsA levels were lower in the small neonates despite the fact that their mothers had received sufficient AsA supplementation, and the corticosterone levels were inversely higher compared to wild-type mice. Thus, insufficient AsA contents together with a defect in corticosterone metabolism might be the cause of the retarded growth of the AKR1A-deficient mice embryos and neonates.


Assuntos
Aldeído Redutase/genética , Ácido Ascórbico/sangue , Corticosterona/sangue , Retardo do Crescimento Fetal/genética , Animais , Animais Recém-Nascidos , Contagem de Células Sanguíneas , Feminino , Retardo do Crescimento Fetal/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez
14.
Free Radic Res ; 55(5): 562-580, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33427524

RESUMO

Red blood cells (RBC) are specifically differentiated to transport oxygen and carbon dioxide in the blood and they lack most organelles, including mitochondria. The autoxidation of hemoglobin constitutes a major source of reactive oxygen species (ROS). Nitric oxide, which is produced by endothelial nitric oxide synthase (NOS3) or via the hemoglobin-mediated conversion of nitrite, interacts with ROS and results in the production of reactive nitrogen oxide species. Herein we present an overview of anemic diseases that are closely related to oxidative damage. Because the compensation of proteins by means of gene expression does not proceed in enucleated cells, antioxidative and redox systems play more important roles in maintaining the homeostasis of RBC against oxidative insult compared to ordinary cells. Defects in hemoglobin and enzymes that are involved in energy production and redox reactions largely trigger oxidative damage to RBC. The results of studies using genetically modified mice suggest that antioxidative enzymes, notably superoxide dismutase 1 and peroxiredoxin 2, play essential roles in coping with oxidative damage in erythroid cells, and their absence limits erythropoiesis, the life-span of RBC and consequently results in the development of anemia. The degeneration of the machinery involved in the proteolytic removal of damaged proteins appears to be associated with hemolytic events. The ubiquitin-proteasome system is the dominant machinery, not only for the proteolytic removal of damaged proteins in erythroid cells but also for the development of erythropoiesis. Hence, despite the fact that it is less abundant in RBC compared to ordinary cells, the aberrant ubiquitin-proteasome system may be associated with the development of anemic diseases via the accumulation of damaged proteins, as typified in sickle cell disease, and impaired erythropoiesis.


Assuntos
Anemia/etiologia , Eritrócitos/metabolismo , Estresse Oxidativo/imunologia , Anemia/patologia , Humanos
15.
Arch Biochem Biophys ; 700: 108775, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33493440

RESUMO

Ferroptosis is a type of iron-dependent, non-apoptotic cell death, which is typically induced by cysteine starvation or by the inhibition of glutathione peroxidase 4 (GPX4) activity with the accompanying elevation in lipid peroxidation product levels. Despite the central role of mitochondria in oxidative metabolism and hence, as main sources of superoxide, the issue of whether mitochondrial superoxide participates in the execution of ferroptosis remains unclear. To gain additional insights into this issue, we employed suppressors of the site IQ electron leak (S1QEL) and suppressors of the site IIIQo electron leak (S3QEL), small molecules that suppress mitochondrial superoxide production from complex I and III, respectively. The findings indicate that S3QEL, but not S1QEL, significantly protected mouse hepatoma Hepa 1-6 cells from lipid peroxidation and the subsequent ferroptosis induced by cysteine (Cys) starvation (cystine deprivation from culture media or xCT inhibition by erastin). The intracellular levels of Cys and GSH remained low irrespective of life or death. Moreover, S3QEL also suppressed ferroptosis in xCT-knockout mouse-derived embryonic fibroblasts, which usually die under conventional cultivating conditions due to the absence of intracellular Cys and GSH. Although it has been reported that erastin induces the hyperpolarization of the mitochondrial membrane potential, no correlation was observed between hyperpolarization and cell death in xCT-knockout cells. Collectively, these results indicate that superoxide production from complex III plays a pivotal role in the ferroptosis that is induced by Cys starvation, suggesting that protecting mitochondria is a promising therapeutic strategy for the treatment of multiple diseases featuring ferroptosis.


Assuntos
Cisteína/deficiência , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Ferroptose , Potencial da Membrana Mitocondrial , Membranas Mitocondriais/metabolismo , Superóxidos/metabolismo , Animais , Células HeLa , Humanos , Camundongos
16.
Neurosci Res ; 171: 34-40, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33476681

RESUMO

The defining characteristic of prion diseases is conversion of a cellular prion protein (PrPC) to an abnormal prion protein (PrPSc). The exogenous attachment of PrPSc to the surface of a target cell is critical for infection. However, the initial interaction of PrPSc with the cell surface is poorly characterized. In the current study, we specifically focused on the association of PrPSc with cells during the early phase of infection, using an acute infection model. First, we treated mouse neuroblastoma N2a-58 cells with prion strain 22 L-infected brain homogenates and revealed that PrPSc was associated with membrane fractions within three hours, a short exposure time. These results were also observed in PrPC-deficient hippocampus cell lines. We also demonstrate here that PrPSc from 22 L-infected brain homogenates was associated with lipid rafts during the early phase of infection. Furthermore, we revealed that DS500, a glycosaminoglycan mimetic, inhibited both the attachment of PrPSc to membrane fractions and subsequent prion transmission, suggesting that the early association of prions with cell surface is important for prion infection.


Assuntos
Doenças Priônicas , Príons , Animais , Membrana Celular , Sulfato de Dextrana , Camundongos , Proteínas PrPSc
17.
Free Radic Biol Med ; 162: 255-265, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33096250

RESUMO

Superoxide dismutase 1 (Sod1) plays pivotal roles in antioxidation via accelerating the conversion of superoxide anion radicals into hydrogen peroxide, thus inhibiting the subsequent radical chain reactions. While Sod1 deficient cells inevitably undergo death in culture conditions, Sod1-knockout (KO) mice show relatively mild phenotypes and live approximately two years. We hypothesized that the presence of abundant levels of ascorbic acid (AsA), which is naturally produced in mice, contributes to the elimination of reactive oxygen species (ROS) in Sod1-KO mice. To verify this hypothesis, we employed mice with a genetic ablation of aldehyde reductase (Akr1a), an enzyme that is involved in the biosynthesis of AsA, and established double knockout (DKO) mice that lack both Sod1 and Akr1a. Supplementation of AsA (1.5 mg/ml in drinking water) was required for the DKO mice to breed, and, upon terminating the AsA supplementation, they died within approximately two weeks regardless of age or gender. We explored the etiology of the death from pathophysiological standpoints in principal organs of the mice. Marked changes were observed in the lungs in the form of macroscopic damage after the AsA withdrawal. Histological and immunological analyses of the lungs indicated oxidative damage of tissue and activated immune responses. Thus, preferential oxidative injury that occurred in pulmonary tissues appeared to be primary cause of the death in the mice. These collective results suggest that the pivotal function of AsA in coping with ROS in vivo, is largely in pulmonary tissues that are exposed to a hyperoxygenic microenvironment.


Assuntos
Ácido Ascórbico , Superóxido Dismutase , Animais , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Superóxido Dismutase/genética , Superóxido Dismutase-1/genética
18.
J Immunol Methods ; 489: 112912, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33189725

RESUMO

Ferroptosis is regulated, non-apoptotic cell death in which ferrous iron and lipid peroxidation products play essential roles. While the ferroptotic pathway is now becoming unveiled, it is difficult to determine its involvement in situ because no unique marker for ferroptotic cells is known. In this study, we report on raising a rat monoclonal antibody against mouse-derived Hepa 1-6 cells that had been cultivated in cystine-deprived media. Binding of the resulting antibody, designated as FerAb, increased during advancing ferroptosis which was caused, not only by cystine deprivation but also treatment with erastin or RSL3, while apoptotic cell death induced by a staurosporine treatment had no effect on the binding. The FerAb was found to bind to 4-hydroxy-2-nonenal (HNE)-modified bovine serum albumin, but no specific protein was detected in ferroptotic cells in an immunoblot analysis. These results indicate that non-proteinaceous, HNE-like structural moiety was part of the antigen for FerAb, although the binding profiles of FerAb to ferroptotic cells were different from those of the currently available anti-HNE antibody. Immunocytological detection revealed inhomogenous staining within cells and partial co-localization with peripheral mitochondria and other cellular components. FerAb was found to be applicable for ferroptotic cells in other mouse cells and cultured human cells that were examined. Thus, the properties of the rat monoclonal antibody FerAb established in this study promise to be useful for the characterization of ferroptotic cell death.


Assuntos
Anticorpos Monoclonais/imunologia , Ferroptose/imunologia , Animais , Sobrevivência Celular/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Células Tumorais Cultivadas
19.
Sci Rep ; 10(1): 17934, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087733

RESUMO

PRDX4, a member of peroxiredoxin family, is largely concentrated in the endoplasmic reticulum (ER) and plays a pivotal role in the redox relay during oxidative protein folding as well as in peroxidase reactions. A testis-specific PRDX4 variant transcript (PRDX4t) lacks the conventional exon 1, which encodes the signal peptide that is required for entry into the ER lumen, but instead carries alternative exon 1, which is transcribed from the upstream promoter in a testis-specific manner and results in the PRDX4t protein being localized in the cytosol. However, the potential roles of PRDX4t in male genital action remain unknown. Using a CRISPR/Cas9 system, we first disrupted the testis-specific promoter/exon 1 and generated mice that were specifically deficient in PRDX4t. The resulting PRDX4t knockout (KO) mice underwent normal spermatogenesis and showed no overt abnormalities in the testis. Mating PRDX4t KO male mice with wild-type (WT) female mice produced normal numbers of offspring, indicating that a PRDX4t deficiency alone had no effect on fertility in the male mice. We then generated mice lacking both PRDX4 and PRDX4t by disrupting exon 2, which is communal to these variants. The resulting double knockout (DKO) mice were again fertile, and mature sperm isolated from the epididymis of DKO mice exhibited a normal fertilizing ability in vitro. In the meantime, the protein levels of glutathione peroxidase 4 (GPX4), which plays an essential role in the disulfide bond formation during spermatogenesis, were significantly increased in the testis and caput epididymis of the DKO mice compared with the WT mice. Based on these results, we conclude that the disruption of the function of PRDX4t in the spermatogenic process appears to be compensated by other factors including GPX4.


Assuntos
Fertilidade/genética , Variação Genética/genética , Peroxirredoxinas/genética , Peroxirredoxinas/fisiologia , Espermatogênese/genética , Animais , Éxons , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos/genética , Peroxirredoxinas/deficiência , Peroxirredoxinas/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/fisiologia , Gravidez , Testículo/metabolismo
20.
Toxicol Lett ; 333: 192-201, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32805337

RESUMO

To gain insights into the benefits of ascorbic acid (AsA) in hepatoprotection, we examined the status of Akr1a-/- (KO) mice, which biosynthesize AsA at about 10% the rate as Akr1a+/+ (WT) mice, in terms of their response to an N-nitrosodiethylamine (NDEA)-induced hepatic injury. The intraperitoneal injection of NDEA (35 mg/kg) started at 4 weeks of age and was performed at weekly intervals thereafter. While the fatality rate was substantial in the KO mice, AsA supplementation (1.5 mg/ml in the drinking water) greatly extended their life-spans. Only two out of 54 KO mice survived to 28 weeks, and both contained approximately an order of magnitude greater number of tumor nodules compared to WT mice or KO mice with AsA supplementation. Histological and biochemical examinations at 20 weeks indicated that AsA potently protected against the hepatotoxic action of NDEA. Interestingly, the AsA levels in the liver were higher in the AsA-supplemented KO mouse groups that had received the NDEA treatment compared to the corresponding control group. While the protein levels of Cyp2e1, an enzyme that plays a major role in the bioactivation of NDEA, had declined to a similar extent among the experimental groups, p-nitrophenol-oxidizing activity was sustained at high levels in the KO mouse livers but AsA supplementation suppressed this activity. These findings confirm that AsA is a potent micronutrient that copes with hepatic injury and cancer development caused by exposure to NDEA in the livers of Akr1a-knockout mice.


Assuntos
Aldeído Redutase/metabolismo , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Carcinogênese/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Dietilnitrosamina/toxicidade , Fígado/efeitos dos fármacos , Aldeído Redutase/genética , Animais , Antioxidantes/metabolismo , Biomarcadores/sangue , Carcinogênese/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fígado/metabolismo , Fígado/patologia , Testes de Função Hepática , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA