Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 71: 103117, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479223

RESUMO

Accumulation of reactive oxygen species (i.e., oxidative stress) is a leading cause of beta cell dysfunction and apoptosis in diabetes. NRF2 (NF-E2 p45-related factor-2) regulates the adaptation to oxidative stress, and its activity is negatively regulated by the redox-sensitive CUL3 (cullin-3) ubiquitin ligase substrate adaptor KEAP1 (Kelch-like ECH-associated protein-1). Additionally, NRF2 is repressed by the insulin-regulated Glycogen Synthase Kinase-3 (GSK3). We have demonstrated that phosphorylation of NRF2 by GSK3 enhances ß-TrCP (beta-transducin repeat-containing protein) binding and ubiquitylation by CUL1 (cullin-1), resulting in increased proteasomal degradation of NRF2. Thus, we hypothesise that inhibition of GSK3 activity or ß-TrCP binding upregulates NRF2 and so protects beta cells against oxidative stress. We have found that treating the pancreatic beta cell line INS-1 832/13 with the KEAP1 inhibitor TBE31 significantly enhanced NRF2 protein levels. The presence of the GSK3 inhibitor CT99021 or the ß-TrCP-NRF2 protein-protein interaction inhibitor PHAR, along with TBE31, resulted in prolonged NRF2 stability and enhanced nuclear localisation (P < 0.05). TBE31-mediated induction of NRF2-target genes encoding NAD(P)H quinone oxidoreductase 1 (Nqo1), glutamate-cysteine ligase modifier (Gclm) subunit and heme oxygenase (Hmox1) was significantly enhanced by the presence of CT99021 or PHAR (P < 0.05) in both INS-1 832/13 and in isolated mouse islets. Identical results were obtained using structurally distinct GSK3 inhibitors and inhibition of KEAP1 with sulforaphane. In summary, we demonstrate that GSK3 and ß-TrCP/CUL1 regulate the proteasomal degradation of NRF2, enhancing the impact of KEAP1 regulation, and so contributes to the redox status of pancreatic beta cells. Inhibition of GSK3, or ß-TrCP/CUL1 binding to NRF2 may represent a strategy to protect beta cells from oxidative stress.


Assuntos
Quinase 3 da Glicogênio Sintase , Células Secretoras de Insulina , Animais , Camundongos , Proteínas Contendo Repetições de beta-Transducina/genética , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Proteínas Culina/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Células Secretoras de Insulina/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Estabilidade Proteica , Transcrição Gênica
3.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119629, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37981034

RESUMO

The migratory and invasive potential of tumour cells relies on the actin cytoskeleton. We previously demonstrated that the tricyclic compound, TBE-31, inhibits actin polymerization and here we further examine the precise interaction between TBE-31 and actin. We demonstrate that iodoacetamide, a cysteine (Cys) alkylating agent, interferes with the ability of TBE-31 to interact with actin. In addition, in silico analysis identified Cys 217, Cys 272, Cys 285 and Cys 374 as potential binding sites for TBE-31. Using mass spectrometry analysis, we determined that TBE-31 associates with actin with a stoichiometric ratio of 1:1. We mutated the identified cysteines of actin to alanine and performed a pull-down analysis with a biotin labeled TBE-31 and demonstrated that by mutating Cys 374 to alanine the association between TBE-31 and actin was significantly reduced, suggesting that TBE-31 binds to Cys 374. A characterization of the NIH3T3 cells overexpressing eGFP-actin-C374A showed reduced stress fiber formation, suggesting Cys 374 is necessary for efficient incorporation into filamentous actin. Furthermore, migration of eGFP-Actin-WT expressing cells were observed to be inhibited by TBE-31, however fewer eGFP-Actin-C374A expressing cells were observed to migrate compared to the cells expressing eGFP-Actin-WT in the presence or absence of TBE-31. Taken together, our results suggest that TBE-31 binds to Cys 374 of actin to inhibit actin stress fiber formation and may potentially be a mechanism through which TBE-31 inhibits cell migration.


Assuntos
Actinas , Cisteína , Fenantrenos , Camundongos , Animais , Actinas/genética , Actinas/metabolismo , Cisteína/genética , Cisteína/metabolismo , Acetileno , Alcinos , Fibras de Estresse , Células NIH 3T3 , Movimento Celular , Alanina
4.
Free Radic Biol Med ; 191: 203-211, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36084789

RESUMO

The transcription factor BACH1 regulates the expression of a variety of genes including genes involved in oxidative stress responses, inflammation, cell motility, cancer cell invasion and cancer metabolism. Based on this, BACH1 has become a promising therapeutic target in cancer (as anti-metastatic target) and also in chronic conditions linked to oxidative stress and inflammation, where BACH1 inhibitors share a therapeutic space with activators of transcription factor NRF2. However, while there is a growing number of NRF2 activators, there are only a few described BACH1 inhibitors/degraders. The synthetic acetylenic tricyclic bis(cyanoenone),(±)-(4bS,8aR,10aS)-10a-ethynyl-4b,8,8-trimethyl-3,7-dioxo-3.4b,7,8,8a,9,10, 10a-octahydrophenanthrene-2,6-dicarbonitrile, TBE31 is a potent activator of NRF2 without any BACH1 activity. Herein we found that biotinylation of TBE31 greatly reduces its potency as NRF2 activator (50-75-fold less active) while acquiring a novel activity as a BACH1 degrader (100-200-fold more active). We demonstrate that TBE56, the biotinylated TBE31, interacts and promotes the degradation of BACH1 via a mechanism involving the E3 ligase FBXO22. TBE56 is a potent and sustained BACH1 degrader (50-fold more potent than hemin) and accordingly a powerful HMOX1 inducer. TBE56 degrades BACH1 in lung and breast cancer cells, impairing breast cancer cell migration and invasion in a BACH1-dependent manner, while TBE31 has no significant effect. Altogether, our study identifies that the biotinylation of TBE31 provides novel activities with potential therapeutic value, providing a rationale for further characterisation of this and related compounds.


Assuntos
Neoplasias da Mama , Proteínas F-Box , Acetileno , Alcinos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Biotinilação , Proteínas F-Box/metabolismo , Feminino , Hemina , Humanos , Inflamação , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
5.
Redox Biol ; 51: 102291, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35313207

RESUMO

The transcription factor BACH1 is a potential therapeutic target for a variety of chronic conditions linked to oxidative stress and inflammation, as well as cancer metastasis. However, only a few BACH1 degraders/inhibitors have been described. BACH1 is a transcriptional repressor of heme oxygenase 1 (HMOX1), which is positively regulated by transcription factor NRF2 and is highly inducible by derivatives of the synthetic oleanane triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO). Most of the therapeutic activities of these compounds are due to their anti-inflammatory and antioxidant properties, which are widely attributed to their ability to activate NRF2. However, with such a broad range of action, these compounds have other molecular targets that have not been fully identified and could also be of importance for their therapeutic profile. Herein we identified BACH1 as a target of two CDDO-derivatives (CDDO-Me and CDDO-TFEA), but not of CDDO. While both CDDO and CDDO-derivatives activate NRF2 similarly, only CDDO-Me and CDDO-TFEA inhibit BACH1, which explains the much higher potency of these CDDO-derivatives as HMOX1 inducers compared with unmodified CDDO. Notably, we demonstrate that CDDO-Me and CDDO-TFEA inhibit BACH1 via a novel mechanism that reduces BACH1 nuclear levels while accumulating its cytoplasmic form. In an in vitro model, both CDDO-derivatives impaired lung cancer cell invasion in a BACH1-dependent and NRF2-independent manner, while CDDO was inactive. Altogether, our study identifies CDDO-Me and CDDO-TFEA as dual KEAP1/BACH1 inhibitors, providing a rationale for further therapeutic uses of these drugs.


Assuntos
Ácido Oleanólico , Triterpenos , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Estresse Oxidativo , Triterpenos/farmacologia
6.
Antioxidants (Basel) ; 11(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35204145

RESUMO

The evolutionary conserved non-heme Fe-containing protein pirin has been implicated as an important factor in cell proliferation, migration, invasion, and tumour progression of melanoma, breast, lung, cervical, prostate, and oral cancers. Here we found that pirin is overexpressed in human colorectal cancer in comparison with matched normal tissue. The overexpression of pirin correlates with activation of transcription factor nuclear factor erythroid 2 p45-related factor 2 (Nrf2) and increased expression of the classical Nrf2 target NAD(P)H:quinone oxidoreductase 1 (NQO1), but interestingly and unexpectedly, not with expression of the aldo-keto reductase (AKR) family members AKR1B10 and AKR1C1, which are considered to be the most overexpressed genes in response to Nrf2 activation in humans. Using pharmacologic and genetic approaches to either downregulate or upregulate Nrf2, we show that pirin is regulated by Nrf2 in human and mouse cells and in the mouse colon in vivo. The small molecule pirin inhibitor TPhA decreased the viability of human colorectal cancer (DLD1) cells, but this decrease was independent of the levels of pirin. Our study demonstrates the Nrf2-dependent regulation of pirin and encourages the pursuit for specific pirin inhibitors.

7.
iScience ; 25(2): 103827, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35198887

RESUMO

To overcome oxidative, inflammatory, and metabolic stress, cells have evolved cytoprotective protein networks controlled by nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) and its negative regulator, Kelch-like ECH associated protein 1 (Keap1). Here, using high-resolution mass spectrometry we characterize the proteomes of macrophages with altered Nrf2 status revealing significant differences among the genotypes in metabolism and redox homeostasis, which were validated with respirometry and metabolomics. Nrf2 affected the proteome following lipopolysaccharide (LPS) stimulation, with alterations in redox, carbohydrate and lipid metabolism, and innate immunity. Notably, Nrf2 activation promoted mitochondrial fusion. The Keap1 inhibitor, 4-octyl itaconate remodeled the inflammatory macrophage proteome, increasing redox and suppressing type I interferon (IFN) response. Similarly, pharmacologic or genetic Nrf2 activation inhibited the transcription of IFN-ß and its downstream effector IFIT2 during LPS stimulation. These data suggest that Nrf2 activation facilitates metabolic reprogramming and mitochondrial adaptation, and finetunes the innate immune response in macrophages.

8.
J Biol Chem ; 298(3): 101719, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35151690

RESUMO

The mitochondrial protein LonP1 is an ATP-dependent protease that mitigates cell stress and calibrates mitochondrial metabolism and energetics. Biallelic mutations in the LONP1 gene are known to cause a broad spectrum of diseases, and LonP1 dysregulation is also implicated in cancer and age-related disorders. Despite the importance of LonP1 in health and disease, specific inhibitors of this protease are unknown. Here, we demonstrate that 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO) and its -methyl and -imidazole derivatives reversibly inhibit LonP1 by a noncompetitive mechanism, blocking ATP-hydrolysis and thus proteolysis. By contrast, we found that CDDO-anhydride inhibits the LonP1 ATPase competitively. Docking of CDDO derivatives in the cryo-EM structure of LonP1 shows these compounds bind a hydrophobic pocket adjacent to the ATP-binding site. The binding site of CDDO derivatives was validated by amino acid substitutions that increased LonP1 inhibition and also by a pathogenic mutation that causes cerebral, ocular, dental, auricular and skeletal (CODAS) syndrome, which ablated inhibition. CDDO failed to inhibit the ATPase activity of the purified 26S proteasome, which like LonP1 belongs to the AAA+ superfamily of ATPases Associated with diverse cellular Activities, suggesting that CDDO shows selectivity within this family of ATPases. Furthermore, we show that noncytotoxic concentrations of CDDO derivatives in cultured cells inhibited LonP1, but not the 26S proteasome. Taken together, these findings provide insights for future development of LonP1-specific inhibitors with chemotherapeutic potential.


Assuntos
Proteases Dependentes de ATP , Trifosfato de Adenosina , Mitocôndrias , Proteínas Mitocondriais , Ácido Oleanólico/análogos & derivados , Trifosfato de Adenosina/metabolismo , Endopeptidases/metabolismo , Hidrólise/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Ácido Oleanólico/farmacologia
9.
Commun Biol ; 4(1): 1081, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526660

RESUMO

Transcription factor nuclear factor erythroid 2 p45-related factor 2 (Nrf2) and its main negative regulator, Kelch-like ECH associated protein 1 (Keap1), are at the interface between redox and intermediary metabolism. Nrf2 activation is protective in models of human disease and has benefits in clinical trials. Consequently, the Keap1/Nrf2 protein complex is a drug target. However, in cancer Nrf2 plays a dual role, raising concerns that Nrf2 activators may promote growth of early neoplasms. To address this concern, we examined the role of Nrf2 in development of colorectal adenomas by employing genetic, pharmacological, and metabolomic approaches. We found that colorectal adenomas that form in Gstp-/-: ApcMin/+ mice are characterized by altered one-carbon metabolism and that genetic activation, but not disruption of Nrf2, enhances these metabolic alterations. However, this enhancement is modest compared to the magnitude of metabolic differences between tumor and peri-tumoral tissues, suggesting that the metabolic changes conferred by Nrf2 activation may have little contribution to the early stages of carcinogenesis. Indeed, neither genetic (by Keap1 knockdown) nor pharmacological Nrf2 activation, nor its disruption, affected colorectal adenoma formation in this model. We conclude that pharmacological Nrf2 activation is unlikely to impact the early stages of development of colorectal cancer.


Assuntos
Adenoma/genética , Neoplasias Colorretais/genética , Fator 2 Relacionado a NF-E2/genética , Adenoma/metabolismo , Animais , Carcinogênese , Neoplasias Colorretais/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo
10.
Environ Pollut ; 270: 116053, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33213951

RESUMO

Inorganic arsenic (iAs) is a naturally occurring metalloid present in drinking water and polluted air exposing millions of people globally. Epidemiological studies have linked iAs exposure to the development of numerous diseases including cognitive impairment, cardiovascular failure and cancer. Despite intense research, an effective therapy for chronic arsenicosis has yet to be developed. Laboratory studies have been of great benefit in establishing the pathways involved in iAs toxicity and providing insights into its mechanism of action. However, the in vivo analysis of arsenic toxicity mechanisms has been difficult by the lack of reliable in vivo biomarkers of iAs's effects. To address this issue we have applied the use of our recently developed stress reporter models to study iAs toxicity. The reporter mice Hmox1 (oxidative stress/inflammation; HOTT) and p21 (DNA damage) were exposed to iAs at acute and chronic, environmentally relevant, doses. We observed induction of the oxidative stress reporters in several cell types and tissues, which was largely dependent on the activation of transcription factor NRF2. We propose that our HOTT reporter model can be used as a surrogate biomarker of iAs-induced oxidative stress, and it constitutes a first-in-class platform to develop treatments aimed to counteract the role of oxidative stress in arsenicosis. Indeed, in a proof of concept experiment, the HOTT reporter mice were able to predict the therapeutic utility of the antioxidant N-acetyl cysteine in the prevention of iAs associated toxicity.


Assuntos
Intoxicação por Arsênico , Arsênio , Animais , Antioxidantes , Arsênio/toxicidade , Biomarcadores , Heme Oxigenase-1/genética , Proteínas de Membrana , Camundongos , Estresse Oxidativo
11.
iScience ; 23(10): 101638, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33103077

RESUMO

Transcription factor nuclear factor erythroid 2 p45-related factor 2 (Nrf2) and its main negative regulator, Kelch-like ECH-associated protein 1 (Keap1), are at the interface between redox and intermediary metabolism, allowing adaptation and survival under conditions of oxidative, inflammatory, and metabolic stress. Nrf2 is the principal determinant of redox homeostasis, and contributes to mitochondrial function and integrity and cellular bioenergetics. Using proteomics and lipidomics, we show that genetic downregulation of Keap1 in mice, and the consequent Nrf2 activation to pharmacologically relevant levels, leads to upregulation of carboxylesterase 1 (Ces1) and acyl-CoA oxidase 2 (Acox2), decreases triglyceride levels, and alters the lipidome. This is accompanied by downregulation of hepatic ATP-citrate lyase (Acly) and decreased levels of acetyl-CoA, a trigger for autophagy. These findings suggest that downregulation of Keap1 confers features of a fasted metabolic state, which is an important consideration in the drug development of Keap1-targeting pharmacologic Nrf2 activators.

12.
J Fluor Chem ; 217: 29-40, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31537946

RESUMO

This account exemplifies our recent progress on the strategic incorporation of fluorine and organofluorine groups to (i) taxoid anticancer agents, (ii) acylhydrazone-based antifungal agents and (iii) inhibitors of matrix metalloproteinase 9 (MMP9) for medicinal chemistry and chemical biology studies. In the case study (i), a series of next-generation fluorotaxoids, bearing m-OCF3 or m-OCF2H group in the C2-benzoate moiety was designed, synthesized and examined for their potencies. A number of these fluorotaxoids possess two orders of magnitude greater potency in different drug-resistant cancer cell lines as compared to paclitaxel. One of these next-generation fluorotaxoids, SB--121205wasselected for detailed mechanistic study against highly paclitaxel-resistant human breast cancer cell line, MCF-7/PTX, which disclosed a unique mechanism of action. Recently, glucosylceramide (GlcCer) synthesis emerged as a promising target for next-generation antifungal agents, especially against cryptococcosis, candidiasis and pulmonary aspergillosis. The HTP screening of compound libraries identified several acylhydrazones as hit compounds. In the case study (ii), fluoro-acylhydrazones containing F, OCF3, OCHF2, o-F/p-OCF3, as well as o-F/p-CF3 functional groups in the ring A and ring B were designed based on these hit compounds, synthesized and examined for their potencies against C. neoformans. A number of those novel fluoro-acylhydrazones exhibited high potency and excellent killing properties. The hemopexin-like domain of matrix metalloproteinases (MMPs) is a highly promising target to circumvent the critical issue in the development of MMP inhibitors for the treatment of various cancers. In the case study (iii), a small optimization library of compounds, based on the OCHF2-containing hit compound, SB-M-001, was generated and evaluated, which identified a fluorine-containing new lead compound, SB-M-103. SB-M-103 was found to inhibit tumor cell growth, migration, and invasion by effectively disrupting the MMP-9 homodimerization.

13.
Front Chem ; 6: 401, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30250840

RESUMO

"Tropone" is a non-benzenoid aromatic skeleton that can be found in a variety of natural products. This cyclohepta-2,4,6-trien-1-one skeleton appears simple, but there have been no straightforward ways to construct this molecular architecture. It is conceivable that this molecule can be constructed via a higher order cycloaddition of three acetylene units and CO, but such process was not known until we have discovered that the carbonylative [2+2+2+1] cycloaddition of triynes can take place in the presence of a Rh complex catalyst and CO. However, this highly challenging process is naturally accompanied by ordinary [2+2+2] cyclotrimization products, i.e., benzenes, as side products. A mechanistic study led to two competing processes wherein the critical CO insertion occurs either to a rhodacyclopentadiene intermediate (Path A) or a rhodacycloheptatriene intermediate (Path B). The DFT analysis of those two pathways disclosed that the Path A should be the one that yields the carbonylative [2+2+2+1] cycloaddition products, i.e., fused tricyclic tropones. A further substrate design, inspired by colchicine structure, led to the almost exclusive formation of a fused tetracyclic tropone from a triyne bearing 1,2-disubstituted benzene moiety in a single step and excellent yield.

14.
J Org Chem ; 83(19): 11623-11644, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30129760

RESUMO

The nonbenzenoid aromatics, tropones and tropolones, are found in various natural products such as colchicine and hinokitol, which possess significant biological activities. The traditional methods to construct the tropone skeletons include oxidation of cycloheptatriene and [4+3] cycloadditions. In addition, the total synthesis of colchicine and its analogues requires laborious organic transformations in the formations of 6-7-7 fused-ring systems. Transition metal-catalyzed carbocyclization and cycloaddition reactions have proven to be among the most efficient methods for constructing complex polycyclic systems. On the basis of our recent discovery of the Rh-catalyzed carbonylative [2+2+2+1] cycloaddition of triynes to the formation of a fused tropone system, we report here the application of this methodology to the one-step formation of the 6-7-7-5 fused tetracyclic scaffold of colchicinoids based on the [2+2+2+1] cycloaddition of o-phenylenetriynes with CO. In addition, the one-step formation of allocolchicinoids bearing the 6-7-6-5 fused tetracyclic system through the Rh-catalyzed [2+2+2] cycloaddition of o-phenylenetriynes is also described.


Assuntos
Alcinos/química , Colchicina/química , Colchicina/síntese química , Ródio/química , Catálise , Ciclização , Reação de Cicloadição
15.
Sci Rep ; 8(1): 8037, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29795117

RESUMO

Numerous small molecules (termed inducers), many of which are electrophiles, upregulate cytoprotective responses and inhibit pro-inflammatory pathways by activating nuclear factor-erythroid 2 p45-related factor 2 (NRF2). Key to NRF2 activation is the ability to chemically modifying critical sensor cysteines in the main negative regulator of NRF2, Kelch-like ECH-associated protein 1 (KEAP1), of which C151, C273 and C288 are best characterized. This study aimed to establish the requirement for these cysteine sensor(s) for the biological activities of the most potent NRF2 activators known to date, the cyclic cyanoenones, some of which are in clinical trials. It was found that C151 in KEAP1 is the main cysteine sensor for this class of inducers, irrespective of molecular size or shape. Furthermore, in primary macrophage cells expressing C151S mutant KEAP1, at low concentrations, the tricyclic cyanoenone TBE-31 is inactive as an activator of NRF2 as well as an inhibitor of lipopolysaccharide-stimulated gene expression of the pro-inflammatory cytokines IL6 and IL1ß. However, at high inducer concentrations, NRF2 activation proceeds in the absence of C151, albeit at a lower magnitude. Our findings highlight the intrinsic flexibility of KEAP1 and emphasize the critical importance of establishing the precise dose of NRF2 activators for maintaining on-target selectivity.


Assuntos
Cisteína/química , Proteína 1 Associada a ECH Semelhante a Kelch/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Fenantrenos/farmacologia , Ativação Transcricional/efeitos dos fármacos , Animais , Células Cultivadas , Cisteína/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/genética , Fenantrenos/química , Regulação para Cima
16.
ACS Omega ; 3(4): 3717-3736, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29732446

RESUMO

A unique asymmetric bow-tie poly(amidoamine) (PAMAM) dendrimer (ABTD) scaffold was designed and developed as a well-defined macromolecular carrier for tumor-targeted drug delivery. The ABTD scaffold in this study consists of a G3-half-dendron (G3-HD) unit and a G1-half-dendron (G1-HD) unit, bearing thiol moiety in each unit and a bis(maleimide) linker unit, which undergo sequential thiol-maleimide coupling to assemble the scaffold. This assembly methodology is applicable to all other combinations of different generations of PAMAM dendrimers. In the prototype ABTD in this study, 16 biotin moieties were tethered to the G3-HD unit and 4 payloads (new-generation taxoid) to the G1-HD via a self-immolative linker to form an ABTD-tumor-targeting conjugate (ABTD-TTC-1). Two other ABTD-TTCs were synthesized, wherein the G1-HD unit was tethered to a fluorescence-labeled taxoid or to a fluorescent probe. These three ABTD-TTCs were constructed by using a common key ABTD 6 bearing a terminal acetylene group in the G1-HD unit, which was fully characterized as a single molecule by high-resolution mass spectrometry and NMR despite its high molecular weight (Mw: 12 876). Then, the click reaction was employed to couple ABTD 6 with a small-molecule payload or fluorescence probe unit bearing a terminal azide moiety. ABTD-TTC-3, as a surrogate of ABTD-TTC-2, showed substantially enhanced internalization into two cancer cell lines via receptor-mediated endocytosis, attributed to multibinding effect. ABTD-TTC-1 exhibited a remarkable selectivity to cancer cells (1400-7500 times) compared to human normal cells, which demonstrates the salient feature and bright prospect of the ABTD-based tumor-targeted drug-delivery system.

17.
Cell Mol Gastroenterol Hepatol ; 5(3): 367-398, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29552625

RESUMO

BACKGROUND & AIMS: Nonalcoholic steatohepatitis (NASH) is associated with oxidative stress. We surmised that pharmacologic activation of NF-E2 p45-related factor 2 (Nrf2) using the acetylenic tricyclic bis(cyano enone) TBE-31 would suppress NASH because Nrf2 is a transcriptional master regulator of intracellular redox homeostasis. METHODS: Nrf2+/+ and Nrf2-/- C57BL/6 mice were fed a high-fat plus fructose (HFFr) or regular chow diet for 16 weeks or 30 weeks, and then treated for the final 6 weeks, while still being fed the same HFFr or regular chow diets, with either TBE-31 or dimethyl sulfoxide vehicle control. Measures of whole-body glucose homeostasis, histologic assessment of liver, and biochemical and molecular measurements of steatosis, endoplasmic reticulum (ER) stress, inflammation, apoptosis, fibrosis, and oxidative stress were performed in livers from these animals. RESULTS: TBE-31 treatment reversed insulin resistance in HFFr-fed wild-type mice, but not in HFFr-fed Nrf2-null mice. TBE-31 treatment of HFFr-fed wild-type mice substantially decreased liver steatosis and expression of lipid synthesis genes, while increasing hepatic expression of fatty acid oxidation and lipoprotein assembly genes. Also, TBE-31 treatment decreased ER stress, expression of inflammation genes, and markers of apoptosis, fibrosis, and oxidative stress in the livers of HFFr-fed wild-type mice. By comparison, TBE-31 did not decrease steatosis, ER stress, lipogenesis, inflammation, fibrosis, or oxidative stress in livers of HFFr-fed Nrf2-null mice. CONCLUSIONS: Pharmacologic activation of Nrf2 in mice that had already been rendered obese and insulin resistant reversed insulin resistance, suppressed hepatic steatosis, and mitigated against NASH and liver fibrosis, effects that we principally attribute to inhibition of ER, inflammatory, and oxidative stress.

18.
Sci Rep ; 8(1): 4064, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29497142

RESUMO

A correction has been published and is linked to the HTML and PDF versions of this paper. The error has not been fixed in the paper.

19.
J Org Chem ; 83(5): 2847-2857, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29441783

RESUMO

Next-generation taxoids, such as SB-T-1214, are highly potent cytotoxic agents that exhibit remarkable efficacy against drug-resistant tumors in vivo, including those that overexpress the P-glycoprotein (Pgp) efflux pump. As SB-T-1214 is not a substrate for Pgp-mediated efflux, it may exhibit a markedly different biodistribution and tumor-accumulation profile than paclitaxel or docetaxel, which are both Pgp substrates. To investigate the biodistribution and tumor-accumulation levels of SB-T-1214 using positron emission tomography (PET), a new synthetic route has been developed to allow the incorporation of 11C, a commonly employed positron-emitting radionucleide, via methyl iodide at the last step of chemical synthesis. This synthetic route features a highly stereoselective chiral ester enolate-imine cyclocondensation, regioselective hydrostannation of the resulting ß-lactam, and the Stille coupling of the novel vinylstannyl taxoid intermediate with methyl iodide. Conditions have been established to allow the rapid methylation and HPLC purification of the target compound in a time frame amenable to 11C-labeling for applications to PET studies.


Assuntos
Radioisótopos de Carbono/química , Taxoides/química , Taxoides/síntese química , Catálise , Técnicas de Química Sintética , Marcação por Isótopo , Cinética , Metilação , Paládio/química , Tomografia por Emissão de Pósitrons
20.
Bioorg Chem ; 76: 458-467, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29287255

RESUMO

Theranostics will play a significant role in the next-generation chemotherapy. Two novel tumor-targeting theranostic drug conjugates, bearing imaging arms, were designed and synthesized. These theranostic conjugates consist of biotin as the tumor-targeting moiety, a second generation taxoid, SB-T-1214, as a potent anticancer drug, and two different imaging arms for capturing 99mTc for SPECT (single photon emission computed tomography) and 64Cu for PET (positron emission tomography). To explore the best reaction conditions for capturing radionuclides and work out the chemistry directly applicable to "hot" nuclides, cold chemistry was investigated to capture 185Re(I) and 63Cu(II) species as surrogates for 99mTc and 64Cu, respectively.


Assuntos
Biotina/análogos & derivados , Desenho de Fármacos , Neoplasias/diagnóstico por imagem , Taxoides/síntese química , Nanomedicina Teranóstica , Triazinas/síntese química , Animais , Biotina/síntese química , Quelantes/síntese química , Química Click , Cobre/química , Tomografia por Emissão de Pósitrons , Rênio/química , Tomografia Computadorizada de Emissão de Fóton Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA