Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39303288

RESUMO

van der Waals (vdW) structures host a broad range of physical phenomena. New opportunities arise if different functional layers are remotely modulated or coupled in a device structure. Here we demonstrate the in situ coherent modulation of moiré excitons and correlated Mott insulators in transition metal dichalcogenide (TMD) moirés with on-chip terahertz (THz) waves. Using common dual-gated device structures of a TMD moiré bilayer sandwiched between two few-layer graphene (fl-Gr) gates with hexagonal boron nitride (h-BN) spacers, we launch coherent phonon wavepackets at ∼0.4-1 THz from the fl-Gr gates by femtosecond laser excitation. The waves travel through the h-BN spacer, arrive at the TMD bilayer with precise timing, and coherently modulate the moiré excitons or Mott states. These results demonstrate that the fl-Gr gates, often used for electrical control, can serve as on-chip opto-elastic transducers to generate THz waves for coherent control and vibrational entanglement of functional layers in moiré devices.

2.
Sci Adv ; 10(33): eadk0015, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39151003

RESUMO

Assays that measure morphology, proliferation, motility, deformability, and migration are used to study the invasiveness of cancer cells. However, native invasive potential of cells may be hidden from these contextual metrics because they depend on culture conditions. We created a micropatterned chip that mimics the native environmental conditions, quantifies the invasive potential of tumor cells, and improves our understanding of the malignancy signatures. Unlike conventional assays, which rely on indirect measurements of metastatic potential, our method uses three-dimensional microchannels to measure the basal native invasiveness without chemoattractants or microfluidics. No change in cell death or proliferation is observed on our chips. Using six cancer cell lines, we show that our system is more sensitive than other motility-based assays, measures of nuclear deformability, or cell morphometrics. In addition to quantifying metastatic potential, our platform can distinguish between motility and invasiveness, help study molecular mechanisms of invasion, and screen for targeted therapeutics.


Assuntos
Movimento Celular , Metástase Neoplásica , Humanos , Linhagem Celular Tumoral , Microtecnologia/métodos , Proliferação de Células , Invasividade Neoplásica , Ensaios de Triagem em Larga Escala/métodos , Dispositivos Lab-On-A-Chip , Neoplasias/patologia
3.
Nat Commun ; 15(1): 6743, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39112505

RESUMO

Atomically thin semiconductor heterostructures provide a two-dimensional (2D) device platform for creating high densities of cold, controllable excitons. Interlayer excitons (IEs), bound electrons and holes localized to separate 2D quantum well layers, have permanent out-of-plane dipole moments and long lifetimes, allowing their spatial distribution to be tuned on demand. Here, we employ electrostatic gates to trap IEs and control their density. By electrically modulating the IE Stark shift, electron-hole pair concentrations above 2 × 1012 cm-2 can be achieved. At this high IE density, we observe an exponentially increasing linewidth broadening indicative of an IE ionization transition, independent of the trap depth. This runaway threshold remains constant at low temperatures, but increases above 20 K, consistent with the quantum dissociation of a degenerate IE gas. Our demonstration of the IE ionization in a tunable electrostatic trap represents an important step towards the realization of dipolar exciton condensates in solid-state optoelectronic devices.

4.
ACS Nano ; 18(26): 17111-17118, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952326

RESUMO

Establishing reliable electrical contacts to atomically thin materials is a prerequisite for both fundamental studies and applications yet remains a challenge. In particular, the development of contact techniques for air-sensitive monolayers has lagged behind, despite their unique properties and significant potential for applications. Here, we present a robust method to create contacts to device layers encapsulated within hexagonal boron nitride (hBN). This method uses plasma etching and metal deposition to create 'vias' in the hBN with graphene forming an atomically thin etch-stop. The resulting partially fluorinated graphene (PFG) protects the underlying device layer from air-induced degradation and damage during metal deposition. PFG is resistive in-plane but maintains high out-of-plane conductivity. The work function of the PFG/metal contact is tunable through the degree of fluorination, offering opportunities for contact engineering. Using the in situ via technique, we achieve ambipolar contact to air-sensitive monolayer 2H-molybdenum ditelluride (MoTe2) with more than 1 order of magnitude improvement in on-current density compared to previous literature. The complete encapsulation provides high reproducibility and long-term stability. The technique can be extended to other air-sensitive materials as well as air-stable materials, offering highly competitive device performance.

6.
Nat Commun ; 15(1): 1543, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378789

RESUMO

Localized states in two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been the subject of intense study, driven by potential applications in quantum information science. Despite the rapidly growing knowledge surrounding these emitters, their microscopic nature is still not fully understood, limiting their production and application. Motivated by this challenge, and by recent theoretical and experimental evidence showing that nanowrinkles generate strain-localized room-temperature emitters, we demonstrate a method to intentionally induce wrinkles with collections of stressors, showing that long-range wrinkle direction and position are controllable with patterned array design. Nano-photoluminescence (nano-PL) imaging combined with detailed strain modeling based on measured wrinkle topography establishes a correlation between wrinkle properties, particularly shear strain, and localized exciton emission. Beyond the array-induced wrinkles, nano-PL spatial maps further reveal that the strain environment around individual stressors is heterogeneous due to the presence of fine wrinkles that are less deterministic. At cryogenic temperatures, antibunched emission is observed, confirming that the nanocone-induced strain is sufficiently large for the formation of quantum emitters. At 300 K, detailed nanoscale hyperspectral images uncover a wide range of low-energy emission peaks originating from the fine wrinkles, and show that the states can be tightly confined to regions <10 nm, even in ambient conditions. These results establish a promising potential route towards realizing room temperature quantum emission in 2D TMDC systems.

7.
Sci Adv ; 10(5): eadj4060, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38295176

RESUMO

Since the seminal work on MoS2, photoexcitation in atomically thin transition metal dichalcogenides (TMDCs) has been assumed to result in excitons, with binding energies order of magnitude larger than thermal energy at room temperature. Here, we reexamine this foundational assumption and show that photoexcitation of TMDC monolayers can result in a substantial population of free charges. Performing ultrafast terahertz spectroscopy on large-area, single-crystal TMDC monolayers, we find that up to ~10% of excitons spontaneously dissociate into charge carriers with lifetimes exceeding 0.2 ns. Scanning tunneling microscopy reveals that photocarrier generation is intimately related to mid-gap defects, likely via trap-mediated Auger scattering. Only in state-of-the-art quality monolayers, with mid-gap trap densities as low as 109 cm-2, does intrinsic exciton physics start to dominate the terahertz response. Our findings reveal the necessity of knowing the defect density in understanding photophysics of TMDCs.

8.
ACS Nano ; 17(24): 24743-24752, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38095969

RESUMO

Defects significantly affect the electronic, chemical, mechanical, and optical properties of two-dimensional (2D) materials. Thus, it is critical to develop a method for convenient and reliable defect quantification. Scanning transmission electron microscopy (STEM) and scanning tunneling microscopy (STM) possess the required atomic resolution but have practical disadvantages. Here, we benchmark conductive atomic force microscopy (CAFM) by a direct comparison with STM in the characterization of transition metal dichalcogenides (TMDs). The results conclusively demonstrate that CAFM and STM image identical defects, giving results that are equivalent both qualitatively (defect appearance) and quantitatively (defect density). Further, we confirm that CAFM can achieve single-atom resolution, similar to that of STM, on both bulk and monolayer samples. The validation of CAFM as a facile and accurate tool for defect quantification provides a routine and reliable measurement that can complement other standard characterization techniques.

9.
Nat Commun ; 14(1): 8261, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38086835

RESUMO

Exciton polaritons are quasiparticles of photons coupled strongly to bound electron-hole pairs, manifesting as an anti-crossing light dispersion near an exciton resonance. Highly anisotropic semiconductors with opposite-signed permittivities along different crystal axes are predicted to host exotic modes inside the anti-crossing called hyperbolic exciton polaritons (HEPs), which confine light subdiffractionally with enhanced density of states. Here, we show observational evidence of steady-state HEPs in the van der Waals magnet chromium sulfide bromide (CrSBr) using a cryogenic near-infrared near-field microscope. At low temperatures, in the magnetically-ordered state, anisotropic exciton resonances sharpen, driving the permittivity negative along one crystal axis and enabling HEP propagation. We characterize HEP momentum and losses in CrSBr, also demonstrating coupling to excitonic sidebands and enhancement by magnetic order: which boosts exciton spectral weight via wavefunction delocalization. Our findings open new pathways to nanoscale manipulation of excitons and light, including routes to magnetic, nonlocal, and quantum polaritonics.

10.
Nat Commun ; 14(1): 6200, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794007

RESUMO

Ferroelectricity, a spontaneous and reversible electric polarization, is found in certain classes of van der Waals (vdW) materials. The discovery of ferroelectricity in twisted vdW layers provides new opportunities to engineer spatially dependent electric and optical properties associated with the configuration of moiré superlattice domains and the network of domain walls. Here, we employ near-field infrared nano-imaging and nano-photocurrent measurements to study ferroelectricity in minimally twisted WSe2. The ferroelectric domains are visualized through the imaging of the plasmonic response in a graphene monolayer adjacent to the moiré WSe2 bilayers. Specifically, we find that the ferroelectric polarization in moiré domains is imprinted on the plasmonic response of the graphene. Complementary nano-photocurrent measurements demonstrate that the optoelectronic properties of graphene are also modulated by the proximal ferroelectric domains. Our approach represents an alternative strategy for studying moiré ferroelectricity at native length scales and opens promising prospects for (opto)electronic devices.

11.
Nano Lett ; 23(21): 9936-9942, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37852205

RESUMO

Hexagonal boron nitride (hBN) hosts phonon polaritons (PhP), hybrid light-matter states that facilitate electromagnetic field confinement and exhibit long-range ballistic transport. Extracting the spatiotemporal dynamics of PhPs usually requires "tour de force" experimental methods such as ultrafast near-field infrared microscopy. Here, we leverage the remarkable environmental sensitivity of excitons in two-dimensional transition metal dichalcogenides to image PhP propagation in adjacent hBN slabs. Using ultrafast optical microscopy on monolayer WSe2/hBN heterostructures, we image propagating PhPs from 3.5 K to room temperature with subpicosecond and few-nanometer precision. Excitons in WSe2 act as transducers between visible light pulses and infrared PhPs, enabling visible-light imaging of PhP transport with far-field microscopy. We also report evidence of excitons in WSe2 copropagating with hBN PhPs over several micrometers. Our results provide new avenues for imaging polar excitations over a large frequency range with extreme spatiotemporal precision and new mechanisms to realize ballistic exciton transport at room temperature.

12.
Nat Mater ; 22(9): 1059-1060, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37644225
13.
Nano Lett ; 23(18): 8426-8435, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37494638

RESUMO

The use of work-function-mediated charge transfer has recently emerged as a reliable route toward nanoscale electrostatic control of individual atomic layers. Using α-RuCl3 as a 2D electron acceptor, we are able to induce emergent nano-optical behavior in hexagonal boron nitride (hBN) that arises due to interlayer charge polarization. Using scattering-type scanning near-field optical microscopy (s-SNOM), we find that a thin layer of α-RuCl3 adjacent to an hBN slab reduces the propagation length of hBN phonon polaritons (PhPs) in significant excess of what can be attributed to intrinsic optical losses. Concomitant nano-optical spectroscopy experiments reveal a novel resonance that aligns energetically with the region of excess PhP losses. These experimental observations are elucidated by first-principles density-functional theory and near-field model calculations, which show that the formation of a large interfacial dipole suppresses out-of-plane PhP propagation. Our results demonstrate the potential utility of charge-transfer heterostructures for tailoring optoelectronic properties of 2D insulators.

14.
Biomech Model Mechanobiol ; 22(4): 1113-1127, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37024601

RESUMO

Renal cystogenesis is the pathological hallmark of autosomal dominant polycystic kidney disease, caused by PKD1 and PKD2 mutations. The formation of renal cysts is a common manifestation in ciliopathies, a group of syndromic disorders caused by mutation of proteins involved in the assembly and function of the primary cilium. Cystogenesis is caused by the derailment of the renal tubular architecture and tissue deformation that eventually leads to the impairment of kidney function. However, the biomechanical imbalance of cytoskeletal forces that are altered in cells with Pkd1 mutations has never been investigated, and its nature and extent remain unknown. In this computational study, we explored the feasibility of various biomechanical drivers of renal cystogenesis by examining several hypothetical mechanisms that may promote morphogenetic markers of cystogenesis. Our objective was to provide physics-based guidance for our formulation of hypotheses and our design of experimental studies investigating the role of biomechanical disequilibrium in cystogenesis. We employed the finite element method to explore the role of (1) wild-type versus mutant cell elastic modulus; (2) contractile stress magnitude in mutant cells; (3) localization and orientation of contractile stress in mutant cells; and (4) sequence of cell contraction and cell proliferation. Our objective was to identify the factors that produce the characteristic tubular cystic growth. Results showed that cystogenesis occurred only when mutant cells contracted along the apical-basal axis, followed or accompanied by cell proliferation, as long as mutant cells had comparable or lower elastic modulus than wild-type cells, with their contractile stresses being significantly greater than their modulus. Results of these simulations allow us to focus future in vitro and in vivo experimental studies on these factors, helping us formulate physics-based hypotheses for renal tubule cystogenesis.


Assuntos
Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Humanos , Rim/metabolismo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/patologia , Mutação/genética
15.
Nat Mater ; 22(7): 838-843, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36997689

RESUMO

Plasmon polaritons in van der Waals materials hold promise for various photonics applications1-4. The deterministic imprinting of spatial patterns of high carrier density in plasmonic cavities and nanoscale circuitry can enable the realization of advanced nonlinear nanophotonic5 and strong light-matter interaction platforms6. Here we demonstrate an oxidation-activated charge transfer strategy to program ambipolar low-loss graphene plasmonic structures. By covering graphene with transition-metal dichalcogenides and subsequently oxidizing the transition-metal dichalcogenides into transition-metal oxides, we activate charge transfer rooted in the dissimilar work functions between transition-metal oxides and graphene. Nano-infrared imaging reveals ambipolar low-loss plasmon polaritons at the transition-metal-oxide/graphene interfaces. Further, by inserting dielectric van der Waals spacers, we can precisely control the electron and hole densities induced by oxidation-activated charge transfer and achieve plasmons with a near-intrinsic quality factor. Using this strategy, we imprint plasmonic cavities with laterally abrupt doping profiles with nanoscale precision and demonstrate plasmonic whispering-gallery resonators based on suspended graphene encapsulated in transition-metal oxides.


Assuntos
Grafite , Elétrons , Óxidos
16.
Nature ; 613(7942): 48-52, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36600069

RESUMO

Achieving electrostatic control of quantum phases is at the frontier of condensed matter research. Recent investigations have revealed superconductivity tunable by electrostatic doping in twisted graphene heterostructures and in two-dimensional semimetals such as WTe2 (refs. 1-5). Some of these systems have a polar crystal structure that gives rise to ferroelectricity, in which the interlayer polarization exhibits bistability driven by external electric fields6-8. Here we show that bilayer Td-MoTe2 simultaneously exhibits ferroelectric switching and superconductivity. Notably, a field-driven, first-order superconductor-to-normal transition is observed at its ferroelectric transition. Bilayer Td-MoTe2 also has a maximum in its superconducting transition temperature (Tc) as a function of carrier density and temperature, allowing independent control of the superconducting state as a function of both doping and polarization. We find that the maximum Tc is concomitant with compensated electron and hole carrier densities and vanishes when one of the Fermi pockets disappears with doping. We argue that this unusual polarization-sensitive two-dimensional superconductor is driven by an interband pairing interaction associated with nearly nested electron and hole Fermi pockets.

17.
Sci Adv ; 8(43): eadd6169, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36288317

RESUMO

Metals are canonical plasmonic media at infrared and optical wavelengths, allowing one to guide and manipulate light at the nanoscale. A special form of optical waveguiding is afforded by highly anisotropic crystals revealing the opposite signs of the dielectric functions along orthogonal directions. These media are classified as hyperbolic and include crystalline insulators, semiconductors, and artificial metamaterials. Layered anisotropic metals are also anticipated to support hyperbolic waveguiding. However, this behavior remains elusive, primarily because interband losses arrest the propagation of infrared modes. Here, we report on the observation of propagating hyperbolic waves in a prototypical layered nodal-line semimetal ZrSiSe. The observed waveguiding originates from polaritonic hybridization between near-infrared light and nodal-line plasmons. Unique nodal electronic structures simultaneously suppress interband loss and boost the plasmonic response, ultimately enabling the propagation of infrared modes through the bulk of the crystal.

18.
Nat Commun ; 13(1): 4271, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879303

RESUMO

The bandwidth-tuned Wigner-Mott transition is an interaction-driven phase transition from a generalized Wigner crystal to a Fermi liquid. Because the transition is generally accompanied by both magnetic and charge-order instabilities, it remains unclear if a continuous Wigner-Mott transition exists. Here, we demonstrate bandwidth-tuned metal-insulator transitions at fixed fractional fillings of a MoSe2/WS2 moiré superlattice. The bandwidth is controlled by an out-of-plane electric field. The dielectric response is probed optically with the 2s exciton in a remote WSe2 sensor layer. The exciton spectral weight is negligible for the metallic state with a large negative dielectric constant. It continuously vanishes when the transition is approached from the insulating side, corresponding to a diverging dielectric constant or a 'dielectric catastrophe' driven by the critical charge dynamics near the transition. Our results support the scenario of continuous Wigner-Mott transitions in two-dimensional triangular lattices and stimulate future explorations of exotic quantum phases in their vicinities.

19.
Nat Commun ; 13(1): 3719, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764651

RESUMO

Polaritons in hyperbolic van der Waals materials-where principal axes have permittivities of opposite signs-are light-matter modes with unique properties and promising applications. Isofrequency contours of hyperbolic polaritons may undergo topological transitions from open hyperbolas to closed ellipse-like curves, prompting an abrupt change in physical properties. Electronically-tunable topological transitions are especially desirable for future integrated technologies but have yet to be demonstrated. In this work, we present a doping-induced topological transition effected by plasmon-phonon hybridization in graphene/α-MoO3 heterostructures. Scanning near-field optical microscopy was used to image hybrid polaritons in graphene/α-MoO3. We demonstrate the topological transition and characterize hybrid modes, which can be tuned from surface waves to bulk waveguide modes, traversing an exceptional point arising from the anisotropic plasmon-phonon coupling. Graphene/α-MoO3 heterostructures offer the possibility to explore dynamical topological transitions and directional coupling that could inspire new nanophotonic and quantum devices.

20.
Nano Lett ; 22(7): 2843-2850, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35294835

RESUMO

The optoelectronic and transport properties of two-dimensional transition metal dichalcogenide semiconductors (2D TMDs) are highly susceptible to external perturbation, enabling precise tailoring of material function through postsynthetic modifications. Here, we show that nanoscale inhomogeneities known as nanobubbles can be used for both strain and, less invasively, dielectric tuning of exciton transport in bilayer tungsten diselenide (WSe2). We use ultrasensitive spatiotemporally resolved optical scattering microscopy to directly image exciton transport, revealing that dielectric nanobubbles are surprisingly efficient at funneling and trapping excitons at room temperature, even though the energies of the bright excitons are negligibly affected. Our observations suggest that exciton funneling in dielectric inhomogeneities is driven by momentum-indirect (dark) excitons whose energies are more sensitive to dielectric perturbations than bright excitons. These results reveal a new pathway to control exciton transport in 2D semiconductors with exceptional spatial and energetic precision using dielectric engineering of dark state energetic landscapes.


Assuntos
Semicondutores , Elementos de Transição , Microscopia , Fenômenos Físicos , Tungstênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA