Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Musculoskelet Disord ; 25(1): 521, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970016

RESUMO

BACKGROUND: Previous studies have implicated rheumatoid arthritis as an independent risk factor for bone density loss. However, whether there is a causal relationship between rheumatic diseases and bone mineral density (BMD) and fractures is still controversial. We employed a bidirectional Mendelian analysis to explore the causal relationship between rheumatic diseases and BMD or fractures. METHODS: The rheumatic diseases instrumental variables (IVs) were obtained from a large Genome-wide association study (GWAS) meta-analysis dataset of European descent. Analyses were performed for the three rheumatic diseases: ankylosing spondylitis (AS) (n = 22,647 cases, 99,962 single nucleotide polymorphisms [SNPs]), rheumatoid arthritis (RA) (n = 58,284 cases, 13,108,512 SNPs), and systemic lupus erythematosus (SLE) (n = 14,267 cases, 7,071,163 SNPs). Two-sample Mendelian randomization (MR) analyses were carried out by using R language TwoSampleMR version 0.5.7. The inverse-variance weighted (IVW), MR-Egger, and weighted median methods were used to analyze the causal relationship between rheumatic diseases and BMD or fracture. RESULTS: The MR results revealed that there was absence of evidence for causal effect of AS on BMD or fracture. However, there is a positive causal relationship of RA with fracture of femur (95% CI = 1.0001 to 1.077, p = 0.046), and RA and fracture of forearm (95% CI = 1.015 to 1.064, p = 0.001). SLE had positive causal links for fracture of forearm (95% CI = 1.004 to 1.051, p = 0.020). Additionally, increasing in heel bone mineral density (Heel-BMD) and total bone mineral density (Total-BMD) can lead to a reduced risk of AS without heterogeneity or pleiotropic effects. The results were stable and reliable. There was absence of evidence for causal effect of fracture on RA (95% CI = 0.929 to 1.106, p = 0.759), and fracture on SLE (95% CI = 0.793 to 1.589, p = 0.516). CONCLUSIONS: RA and SLE are risk factors for fractures. On the other hand, BMD increasing can reduce risk of AS. Our results indicate that rheumatic diseases may lead to an increased risk of fractures, while increased BMD may lead to a reduced risk of rheumatic diseases. These findings provide insight into the risk of BMD and AS, identifying a potential predictor of AS risk as a reduction in BMD.


Assuntos
Artrite Reumatoide , Densidade Óssea , Fraturas Ósseas , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Humanos , Densidade Óssea/genética , Fraturas Ósseas/genética , Fraturas Ósseas/epidemiologia , Artrite Reumatoide/genética , Artrite Reumatoide/complicações , Artrite Reumatoide/epidemiologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/epidemiologia , Doenças Reumáticas/genética , Doenças Reumáticas/epidemiologia , Doenças Reumáticas/complicações , Fatores de Risco , Espondilite Anquilosante/genética , Espondilite Anquilosante/complicações , Espondilite Anquilosante/epidemiologia , Predisposição Genética para Doença
2.
Clin Appl Thromb Hemost ; 28: 10760296211073925, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35043708

RESUMO

Pulmonary embolism (PE) is a common and potentially lethal form of venous thromboembolic disease in ICU patients. A limited number of risk factors have been associated with PE in ICU patients. In this study, we aimed to screen the independent risk factors of PE in ICU patients that can be used to evaluate the patient's condition and provide targeted treatment. We performed a retrospective cohort study using a freely accessible critical care database Medical Information Mart for Intensive Care (MIMIC)-III. The ICU patients were divided into two groups based on the incidence of PE. Finally, 9871 ICU patients were included, among which 204 patients (2.1%) had pulmonary embolism. During the multivariate logistic regression analysis, sepsis, hospital_LOS (the length of stay in hospital), type of admission, tumor, APTT (activated partial thromboplastin time) and platelet were independent risk factors for patients for PE in ICU, with OR values of 1.471 (95%CI 1.001-2.162), 1.001 (95%CI 1.001-1.001), 3.745 (95%CI 2.187-6.414), 1.709 (95%CI 1.247-2.341), 1.014 (95%CI 1.010-1.017) and 1.002 (95%CI 1.001-1.003) (Ps < 0.05). ROC curve analysis showed that the composite indicator had a higher predictive value for ICU patients with PE, with a ROC area under the curve (AUC) of 0.743 (95%CI 0.710 -0.776, p < 0.001). Finally, sepsis, tumor, platelet count, length of stay in the hospital, emergency admission and APTT were independent predictors of PE in ICU patients.


Assuntos
Unidades de Terapia Intensiva/estatística & dados numéricos , Embolia Pulmonar/epidemiologia , Idoso , China/epidemiologia , Bases de Dados Factuais , Feminino , Seguimentos , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Prognóstico , Curva ROC , Estudos Retrospectivos , Fatores de Risco , Fatores de Tempo
3.
Free Radic Biol Med ; 176: 228-240, 2021 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-34260898

RESUMO

Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a serious complication after long-term or excess administration of clinical glucocorticoids intervention, and the pathogenic mechanisms underlying have not been clarified yet. Oxidative stress is considered as a major cause of bone homeostasis disorder. This study is aimed to explore the potential relevance between SIRT3 and GIONFH, as well as the effect of resveratrol, which has been reported for its role in SIRT3 activation, on dexamethasone-induced oxidative stress and mitochondrial compromise in bone marrow stem cells (BMSCs). In this study, our data showed that SIRT3 level was declined in GIONFH rat femoral head, corresponding to a resultant decrease of SIRT3 expression in dexamethasone-treated BMSCs in vitro. We also found that dexamethasone could result in oxidative injury in BMSCs, and resveratrol treatment reduced this deleterious effect via a SIRT3-dependent manner. Moreover, our results demonstrated that rewarding effect of resveratrol on BMSCs osteogenic differentiation was via activation of AMPK/PGC-1α/SIRT3 axis. Meanwhile, resveratrol administration prevented the occurrence of GIONFH, enhanced SIRT3 expression and reduced oxidative level in GIONFH model rats. Therefore, our study provides basic evidence that SIRT3 may be a promising therapeutic target for GIONFH treatment and resveratrol could be an ideal agent for clinical uses.


Assuntos
Osteonecrose , Sirtuína 3 , Animais , Cabeça do Fêmur/metabolismo , Glucocorticoides/toxicidade , Osteogênese , Osteonecrose/metabolismo , Estresse Oxidativo , Ratos , Sirtuína 3/genética , Sirtuína 3/metabolismo
4.
Stem Cell Res Ther ; 12(1): 108, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33541442

RESUMO

BACKGROUND: Bone fracture repair has gained a lot of attention due to the high incidence of delayed union or even nonunion especially in osteoporotic patients, resulting in a dreadful impact on the quality of life. However, current therapies involve the costly expense and hence become unaffordable strategies for fracture recovery. Herein, developing new strategies for better bone repair is essential and urgent. Catalpol treatment has been reported to attenuate bone loss and promote bone formation. However, the mechanisms underlying its effects remain unraveled. METHODS: Rat bone marrow mesenchymal stem cells (BMSCs) were isolated from rat femurs. BMSC osteogenic ability was assessed using ALP and ARS staining, immunofluorescence, and western blot analysis. BMSC-mediated angiogenic potentials were determined using the western blot analysis, ELISA testing, scratch wound assay, transwell migration assay, and tube formation assay. To investigate the molecular mechanism, the lentivirus transfection was used. Ovariectomized and sham-operated rats with calvaria defect were analyzed using micro-CT, H&E staining, Masson's trichrome staining, microfil perfusion, sequential fluorescent labeling, and immunohistochemistry assessment after administrated with/without catalpol. RESULTS: Our results manifested that catalpol enhanced BMSC osteoblastic differentiation and promoted BMSC-mediated angiogenesis in vitro. More importantly, this was conducted via the JAK2/STAT3 pathway, as knockdown of STAT3 partially abolished beneficial effects in BMSCs. Besides, catalpol administration facilitated bone regeneration as well as vessel formation in an OVX-induced osteoporosis calvarial defect rat model. CONCLUSIONS: The data above showed that catalpol could promote osteogenic ability of BMSC and BMSC-dependent angiogenesis through activation of the JAK2/STAT3 axis, suggesting it may be an ideal therapeutic agent for clinical medication of osteoporotic bone fracture.


Assuntos
Células-Tronco Mesenquimais , Osteoporose , Animais , Diferenciação Celular , Células Cultivadas , Humanos , Glucosídeos Iridoides , Osteogênese , Osteoporose/tratamento farmacológico , Qualidade de Vida , Ratos , Fator de Transcrição STAT3/genética
5.
Free Radic Biol Med ; 163: 356-368, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33385540

RESUMO

Osteoporosis is characterized by impaired bone metabolism. Current estimates show that it affects millions of people worldwide and causes a serious socioeconomic burden. Mitophagy plays key roles in bone marrow mesenchymal stem cells (BMSCs) osteoblastic differentiation, mineralization, and survival. Apelin is an endogenous adipokine that participates in bone homeostasis. This study was performed to determine the role of Apelin in the osteoporosis process and whether it affects mitophagy, survival, and osteogenic capacity of BMSCs in in vitro and in vivo models of osteoporosis. Our results demonstrated that Apelin was down-regulated in ovariectomized-induced osteoporosis rats and Apelin-13 treatment activated mitophagy in BMSCs, ameliorating oxidative stress and thereby reviving osteogenic function via AMPK-α phosphorylation. Besides, Apelin-13 administration restored bone mass and microstructure as well as reinstated mitophagy, enhanced osteogenic function in OVX rats. Collectively, our findings reveal the intrinsic mechanisms underlying Apelin-13 regulation in BMSCs and its potential therapeutic values in the treatment of osteoporosis.


Assuntos
Células-Tronco Mesenquimais , Osteoporose , Proteínas Quinases Ativadas por AMP , Animais , Células da Medula Óssea , Diferenciação Celular , Células Cultivadas , Peptídeos e Proteínas de Sinalização Intercelular , Mitofagia , Osteogênese , Osteoporose/tratamento farmacológico , Estresse Oxidativo , Ratos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA