Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 1684, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462247

RESUMO

It was recently reported that circular dichroism in angle-resolved photoemission spectroscopy (CD-ARPES) can be used to observe the Berry curvature in 2H-WSe2 (Cho et al. in Phys Rev Lett 121:186401, 2018). In that study, the mirror plane of the experiment was intentionally set to be perpendicular to the crystal mirror plane, such that the Berry curvature becomes a symmetric function about the experimental mirror plane. In the present study, we performed CD-ARPES on 2H-WSe2 with the crystal mirror plane taken as the experimental mirror plane. Within such an experimental constraint, two experimental geometries are possible for CD-ARPES. The Berry curvature distributions for the two geometries are expected to be antisymmetric about the experimental mirror plane and exactly opposite to each other. Our experimental CD intensities taken with the two geometries were found to be almost opposite near the corners of the 2D projected hexagonal Brillouin zone (BZ) and were almost identical near the center of the BZ. This observation is well explained by taking the Berry curvature or the atomic orbital angular momentum (OAM) into account. The Berry curvature (or OAM) contribution to the CD intensities can be successfully extracted through a comparison of the CD-ARPES data for the two experimental geometries. Thus, the CD-ARPES experimental procedure described provides a method for mapping Berry curvature in the momentum space of topological materials, such as Weyl semimetals.

2.
Nano Lett ; 21(1): 182-188, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33125252

RESUMO

Two-dimensional (2D) organic-inorganic hybrid perovskites have been intensively explored in recent years due to their tunable band gaps and exciton binding energies and increased stability with respect to three-dimensional (3D) hybrid perovskites. Experimental observations suggest the existence of localized edge states in 2D hybrid perovskites which facilitate extremely efficient electron-hole dissociation and long carrier lifetimes, while multiple origins for their formation have been proposed. Using first-principles calculations, we demonstrate that layer edge states are stabilized by internal electric fields created by polarized molecular alignment of organic cations in 2D hybrid perovskites when they are two layers or thicker. Our study gives a simple physical explanation of the edge state formation, and facilitating the design and manipulation of layer edge states for optoelectronic applications.

3.
ACS Appl Mater Interfaces ; 12(40): 45056-45063, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32909428

RESUMO

The fabrication of efficient and spectrally stable pure-blue perovskite light-emitting diodes (LEDs) has been elusive and remains of great interest. Herein, we incorporate diammonium salts into quasi-2D perovskite precursors for phase control of multiple quantum well structures to yield tunable and efficient emission in the blue region. With detailed characterizations and computational studies, we show that in situ passivation by the diammonium salts effectively modifies the surface energies of quasi-2D phases and inhibits the growth of low-band gap quasi-2D and 3D phases. Such phase control and in situ passivation could afford blue light-emitting perovskite thin films with high photoluminescence quantum efficiencies of, for instance, 75% for the emission peak at 471 nm. Using this perovskite thin film as an emitting layer, spectrally stable pure-blue LEDs with an emission peak at 474 nm and a full width at half-maximum of 26 nm could be fabricated to exhibit a brightness of 290 cd m-2 at 8 V and an external quantum efficiency of 2.17%.

4.
ACS Nano ; 13(7): 8347-8355, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31260259

RESUMO

In thermoelectric energy conversions, thermal conductivity reduction is essential for enhancing thermoelectric performance while maintaining a high power factor. Herein, we propose an approach based on coated-grain structures to effectively reduce the thermal conductivity to a much greater degree when compared to that done by conventional nanodot nanocomposite. By incorporating CdTe coated layers on the surface of SnTe grains, the thermal conductivity is as low as 1.16 W/m-K at 929 K, resulting in a thermoelectric figure of merit, i.e., zT, of 1.90. According to our developed theory, phonons scatter coherently due to the phase lag between phonons passing through and around the coated grain. Such scattering is induced by the acoustic impedance mismatch between the coated layer and the grain, resulting in a gigantic phonon-scattering cross section. The phonon-scattering cross section of the coated grains is several orders of magnitude larger than that of the nanodots with the same impurity concentration. The power factor was also slightly increased by the energy filtering effect at the coated surface and additional minority carrier blocking by the heterointerfaces. This scheme can be utilized for various bulk crystals, meaning a broad range of materials can be considered for thermoelectric applications.

5.
Sci Adv ; 5(3): eaat7158, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30838325

RESUMO

Our understanding of correlated electron systems is vexed by the complexity of their interactions. Heavy fermion compounds are archetypal examples of this physics, leading to exotic properties that weave magnetism, superconductivity and strange metal behavior together. The Kondo semimetal CeSb is an unusual example where different channels of interaction not only coexist, but have coincident physical signatures, leading to decades of debate about the microscopic picture describing the interactions between the f moments and the itinerant electron sea. Using angle-resolved photoemission spectroscopy, we resonantly enhance the response of the Ce f electrons across the magnetic transitions of CeSb and find there are two distinct modes of interaction that are simultaneously active, but on different kinds of carriers. This study reveals how correlated systems can reconcile the coexistence of different modes on interaction-by separating their action in momentum space, they allow their coexistence in real space.

6.
Phys Rev Lett ; 121(18): 186401, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30444409

RESUMO

We investigate the hidden Berry curvature in bulk 2H-WSe_{2} by utilizing the surface sensitivity of angle resolved photoemission (ARPES). The symmetry in the electronic structure of transition metal dichalcogenides is used to uniquely determine the local orbital angular momentum (OAM) contribution to the circular dichroism (CD) in ARPES. The extracted CD signals for the K and K^{'} valleys are almost identical, but their signs, which should be determined by the valley index, are opposite. In addition, the sign is found to be the same for the two spin-split bands, indicating that it is independent of spin state. These observed CD behaviors are what are expected from Berry curvature of a monolayer of WSe_{2}. In order to see if CD-ARPES is indeed representative of hidden Berry curvature within a layer, we use tight binding analysis as well as density functional calculation to calculate the Berry curvature and local OAM of a monolayer WSe_{2}. We find that measured CD-ARPES is approximately proportional to the calculated Berry curvature as well as local OAM, further supporting our interpretation.

7.
Sci Rep ; 5: 13488, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26323493

RESUMO

We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems. It also shows asymmetric charge distributions in the Rashba split bands which are induced by the orbital angular momentum. We calculated the electric dipole energies from coupling of the asymmetric charge distribution and external electric field, and compared it to the Rashba splitting. Remarkably, the total split energy is found to come mostly from the difference in the electric dipole energy for both Bi and Sb systems. A perturbative approach for long wave length limit starting from tight binding calculation also supports that the Rashba band splitting originates mostly from the electric dipole energy difference in the strong atomic spin-orbit coupling regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA