Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 94(3): 1752-1759, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35026944

RESUMO

Precise determination of ribonucleic acid (RNA) concentration without the need for calibration was pursued by sequence-specific counting of individual RNA molecules. This approach eliminates the reverse transcription (RT) step required for polymerase chain reaction (PCR)-based quantification, which may hamper accurate measurements owing to uncertain yields of RT reactions. Target RNAs were tagged with a number of fluorescent oligonucleotide probes with complementary sequences. Tagged RNAs were exhaustively counted one by one using a high-sensitivity capillary-based flow cytometric setup. MS2 viral RNA was quantified as a model RNA for which essential parameters, including probe numbers, probe concentration, and hybridization conditions, were optimized for the best performance. Using 70 oligonucleotide probes, MS2 RNA was quantified with 2.0% relative standard deviation, and its validity was assessed by comparison with other RNA quantification methods such as droplet digital PCR and UV spectrophotometry. The observed comparability indicated that the proposed method is unlikely to have a substantial bias. It works for a substantially lower-level RNA than UV and avoids the potential variability in the yield of the RT reaction of RT-qPCR. Therefore, the proposed method could be a valuable addition to current methods and could be further developed as a standard reference method for RNA quantification.


Assuntos
RNA Viral , RNA , Citometria de Fluxo , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Reversa
2.
Appl Opt ; 55(9): 2285-93, 2016 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-27140564

RESUMO

This work introduces a switched integration amplifier (SIA)-based photocurrent meter for femtoampere (fA)-level current measurement, which enables us to measure a 107 dynamic range of spectral responsivity of photometers even with a common lamp-based monochromatic light source. We described design considerations and practices about operational amplifiers (op-amps), switches, readout methods, etc., to compose a stable SIA of low offset current in terms of leakage current and gain peaking in detail. According to the design, we made six SIAs of different integration capacitance and different op-amps and evaluated their offset currents. They showed an offset current of (1.5-85) fA with a slow variation of (0.5-10) fA for an hour under opened input. Applying a detector to the SIA input, the offset current and its variation were increased and the SIA readout became noisier due to finite shunt resistance and nonzero shunt capacitance of the detector. One of the SIAs with 10 pF nominal capacitance was calibrated using a calibrated current source at the current level of 10 nA to 1 fA and at the integration time of 2 to 65,536 ms. As a result, we obtained a calibration formula for integration capacitance as a function of integration time rather than a single capacitance value because the SIA readout showed a distinct dependence on integration time at a given current level. Finally, we applied it to spectral responsivity measurement of a photometer. It is demonstrated that the home-made SIA of 10 pF was capable of measuring a 107 dynamic range of spectral responsivity of a photometer.

3.
Opt Express ; 16(7): 4631-8, 2008 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-18542561

RESUMO

We demonstrate and analyze the acousto-optic coupling between two optical polarization modes of the LP(01) mode propagating in a highly birefringent photonic crystal fiber. The coupling is realized based on wavelength selective acousto-optic coupling by traveling torsional acoustic wave in an all-fiber tunable polarization filter configuration. The dispersion properties of the torsional acoustic wave in the photonic crystal fiber and the influence of axial non-uniformity in the modal birefringence on the filter transmission are discussed in detail.


Assuntos
Desenho Assistido por Computador , Tecnologia de Fibra Óptica/instrumentação , Modelos Teóricos , Refratometria/métodos , Simulação por Computador , Cristalização/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Fótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA