Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(5): e2304257, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37788635

RESUMO

Probiotics have the potential as biotherapeutic agents for cancer management in preclinical models and human trials by secreting antineoplastic or immunoregulatory agents in the tumor microenvironment (TME). However, current probiotics lack the ability to dynamically respond to unique TME characteristics, leading to limited therapeutic accuracy and efficacy. Although progress has been made in customizing controllable probiotics through synthetic biology, the engineering process is complex and the predictability of production is relatively low. To address this, here, for the first time, this work adopts pH-dependent peroxidase-like (POD-like) artificial enzymes as both an inducible "nano-promoter" and "nano-effector" to engineer clinically relevant probiotics to achieve switchable control of probiotic therapy. The nanozyme initially serves as an inducible "nano-promoter," generating trace amounts of nonlethal reactive oxygen species (ROS) stress to upregulate acidic metabolites in probiotics. Once metabolites acidify the TME to a threshold, the nanozyme switches to a "nano-effector," producing a great deal of lethal ROS to fight cancer. This approach shows promise in subcutaneous, orthotopic, and colitis-associated colorectal cancer tumors, offering a new methodology for modulating probiotic metabolism in a pathological environment.


Assuntos
Antineoplásicos , Neoplasias , Probióticos , Humanos , Espécies Reativas de Oxigênio , Probióticos/uso terapêutico , Neoplasias/terapia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Microambiente Tumoral
2.
Bioelectrochemistry ; 154: 108502, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37453203

RESUMO

PFA uses short-duration, high-voltage electrical pulses to induce transient or irreversible electroporation on cell membranes, causing cell death. Selective inhibition of chaotic electrical signals in morbid cardiomyocytes significantly aids the treatment of atrial fibrillation, ventricular tachycardia, and other heart arrhythmias. Recent preclinical and clinical studies have only investigated physical changes, such as lesion size and myocardial scar. Compared to radiofrequency ablation and cryoballoon ablation, PFA causes less postoperative myocardial cell fibrosis and inflammatory reaction and does not result in myocardial necrosis or tissue scar formation. However, the regulatory mechanism of cellular stress following PFA treatment remains unknown. This study aimed to analyze the transcriptome of the mouse ventricle after PFA treatment. The animals were subjected to a 225-V electric pulse with a 1.5-mm gap between the positive and negative electrodes. Hearts were harvested at 3, 6, 12, 24 h, and 2, 5 days for myocardial zymogram testing. PFA-treated ventricular regions were selected for single-nucleus sequencing. We discovered that PFA remodeled the cardiac microenvironment as a whole. Further, we discussed the possible stress response and wound-healing mechanism in non-targeted cells. In conclusion, PFA allowed effective and selective ventricular myocardium ablation with controllable inflammation.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Animais , Camundongos , Cicatriz/cirurgia , Coração , Fibrilação Atrial/cirurgia , Miocárdio
3.
Front Pharmacol ; 14: 1163628, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234705

RESUMO

Background: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death in the world. Nanosecond pulsed electric fields (nsPEFs) have emerged as a new treatment for cancer. This study aims to identify the effectiveness of nsPEFs in the treatment of HCC and analyze the alterations in the gut microbiome and serum metabonomics after ablation. Methods: C57BL/6 mice were randomly divided into three groups: healthy control mice (n = 10), HCC mice (n = 10), and nsPEF-treated HCC mice (n = 23). Hep1-6 cell lines were used to establish the HCC model in situ. Histopathological staining was performed on tumor tissues. The gut microbiome was analyzed by 16S rRNA sequencing. Serum metabolites were analyzed by liquid chromatography-mass spectrometry (LC-MS) metabolomic analysis. Spearman's correlation analysis was carried out to analyze the correlation between the gut microbiome and serum metabonomics. Results: The fluorescence image showed that nsPEFs were significantly effective. Histopathological staining identified nuclear pyknosis and cell necrosis in the nsPEF group. The expression of CD34, PCNA, and VEGF decreased significantly in the nsPEF group. Compared with normal mice, the gut microbiome diversity of HCC mice was increased. Eight genera including Alistipes and Muribaculaceae were enriched in the HCC group. Inversely, these genera decreased in the nsPEF group. LC-MS analysis confirmed that there were significant differences in serum metabolism among the three groups. Correlation analysis showed crucial relationships between the gut microbiome and serum metabolites that are involved in nsPEF ablation of HCC. Conclusion: As a new minimally invasive treatment for tumor ablation, nsPEFs have an excellent ablation effect. The alterations in the gut microbiome and serum metabolites may participate in the prognosis of HCC ablation.

4.
Nat Nanotechnol ; 18(6): 617-627, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36973397

RESUMO

Inflammatory bowel disease can be caused by the dysfunction of the intestinal mucosal barrier and dysregulation of gut microbiota. Traditional treatments use drugs to manage inflammation with possible probiotic therapy as an adjuvant. However, current standard practices often suffer from metabolic instability, limited targeting and result in unsatisfactory therapeutic outcomes. Here we report on artificial-enzyme-modified Bifidobacterium longum probiotics for reshaping a healthy immune system in inflammatory bowel disease. Probiotics can promote the targeting and retention of the biocompatible artificial enzymes to persistently scavenge elevated reactive oxygen species and alleviate inflammatory factors. The reduced inflammation caused by artificial enzymes improves bacterial viability to rapidly reshape the intestinal barrier functions and restore the gut microbiota. The therapeutic effects are demonstrated in murine and canine models and show superior outcomes to traditional clinical drugs.


Assuntos
Bifidobacterium longum , Doenças Inflamatórias Intestinais , Microbiota , Probióticos , Animais , Cães , Camundongos , Disbiose/terapia , Inflamação/tratamento farmacológico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Probióticos/farmacologia , Probióticos/uso terapêutico
5.
Bioact Mater ; 19: 38-49, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35415314

RESUMO

Ischemic stroke is an acute and serious cerebral vascular disease, which greatly affects people's health and brings huge economic burden to society. Microglia, as important innate immune components in central nervous system (CNS), are double-edged swords in the battle of nerve injury, considering their polarization between pro-inflammatory M1 or anti-inflammatory M2 phenotypes. High mobility group box 1 (HMGB1) is one of the potent pro-inflammatory mediators that promotes the M1 polarization of microglia. 18ß-glycyrrhetinic acid (GA) is an effective intracellular inhibitor of HMGB1, but of poor water solubility and dose-dependent toxicity. To overcome the shortcomings of GA delivery and to improve the efficacy of cerebral ischemia therapy, herein, we designed reactive oxygen species (ROS) responsive polymer-drug conjugate nanoparticles (DGA) to manipulate microglia polarization by suppressing the translocation of nuclear HMGB1. DGA presented excellent therapeutic efficacy in stroke mice, as evidenced by the reduction of infarct volume, recovery of motor function, suppressed of M1 microglia activation and enhanced M2 activation, and induction of neurogenesis. Altogether, our work demonstrates a close association between HMGB1 and microglia polarization, suggesting potential strategies for coping with inflammatory microglia-related diseases.

6.
J Cardiovasc Dev Dis ; 9(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36547422

RESUMO

OBJECTIVE: The purpose of this study is to evaluate the preliminary safety and effect of a pulsed electric field (PEF) ablation system. METHODS: The pulmonary veins (PVs) and superior vena cava (SVC) were isolated with the pulsed field ablation (PFA) system, which included a PEF generator and an electrode. The effects of PFA were investigated in six porcines using a novel circular catheter with combined functions (mapping/ablation) designed to work with a cardiac mapping system. The PEF generator delivered a train of biphasic pulsed electric pulses with a high amplitude (800-2000 V) and short pulse duration. The voltage mapping, PVs and SVC potentials, ostial diameters, and phrenic nerve and esophagus viability data were collected 4 weeks later, after which the animals were subsequently euthanized for gross histopathology analysis. RESULTS: PFA 100% isolated the PVs and SVC with four applications with a mean pulse number of 100-150 pulses, causing no muscle convulsion. PFA does not cause PV stenosis or phrenic nerve dysfunction. Histological analysis confirmed 100% transmurally without any venous stenoses or phrenic injuries. Pathology follow-up showed that PFA had selectively ablated cardiomyocytes but spared blood vessels, the esophagus, and phrenic nerves; after ablation, the myocardial tissue showed homogeneous fibrosis. CONCLUSION: The PFA system is safe and feasible in the preliminary porcine model, which can effectively isolate PVs and SVCs. Transmural tissue damage can be achieved without phrenic palsy or stenosis.

7.
Front Cardiovasc Med ; 9: 1012020, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225956

RESUMO

Objective: We investigate the characteristics of histological damage to myocardial cells in the ablation region and surrounding areas of the left ventricular epicardium in rabbits using our self-developed cardiac pulsed electric field (PEF) ablation instrument and ablation catheter. Methods: Forty eight New Zealand rabbits underwent ablation on the left ventricular myocardium after open-heart exposure with a cardiac arrhythmia PEF ablation device and ablation catheter developed by the Medical Translation Laboratory of Pulsed Electric Field Technology in Zhejiang Province. The ablation parameters were set as biphasic electrical pulses; voltage, ±800 V; pulse width, 10 µs; interphase delay, 500 us. Six rabbits were included in the sham group and 42 other rabbits were randomly divided into immediately, 6-h, 1-, 3-day, 1-, 2-, and 4-week post-ablation groups, with six rabbits in each group. Creatine kinase- (CK)-MB isoenzyme (CK-MB), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) levels were measured before and at different time points after PEF ablation to analyze their dynamic evolution. Masson staining of tissue block sections of left ventricular myocardial ablation and adjacent tissue heart specimens was performed, and the occurrence of TUNEL apoptosis in myocardium tissue was analyzed. Results: All rabbits completed the PEF ablation procedure and the follow-up process. After PEF ablation, the levels of cardiac enzymes, including CK-MB, CK, and AST, increased significantly, peaking 1-3 days after the procedure. In particular, those of CK and CK-MB increased by 15-20 times but returned to the preoperative level after 2 weeks. Based on general observation, it was found that the myocardium in the ablation area was swollen immediately after PEF ablation. Masson staining analysis revealed that cardiomyocytes were broken and infiltrated by erythrocytes after 6 h. After 1 day, the cells started to experience atrophy and necrosis; after 3 days, fibrotic replacement of the necrotic area became obvious. Then, by 4 weeks, the myocardial cells were completely replaced by hyperplasia. Apoptosis occurred significantly at 6 h and peaked at 24 h post-ablation, demonstrating a 37.7-fold increase; apoptotic cell counts decreased significantly at 3 days post-ablation, and no significant apoptotic cardiomyocytes were seen after 1 week. Conclusion: After PEF ablation, cardiomyocytes showed apoptotic process and dyed, at least partially, through a secondary necrosis, the ablation boundary was clear, the ablation area was replaced by structurally intact fibroblasts, no island myocardium tissue were seen, and the ablation area vessels and nerves were not affected.

8.
Acta Biomater ; 151: 549-560, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36007778

RESUMO

Chemodynamic therapy (CDT)-activated apoptosis is a potential anticancer strategy. However, CDT encounters a bottleneck in clinical translation due to its serious side effects and low efficacy. Here, we first reveal that surface engineering of ginsenoside Rg3 dramatically alters the organ distribution and tumor enrichment of systematically administered nanocatalysts using the orthotopic pancreatic tumor model while avoiding toxicity and increasing efficacy in vivo to address the key and universal toxicity problems encountered in nanomedicine. Compared with nanocatalysts alone, Rg3-sheltered dynamic nanocatalysts form hydrophilic nanoclusters, prolonging their circulation lifespan in the blood, protecting the internal nanocatalysts from leakage while allowing their specific release at the tumor site. Moreover, the nanoclusters provide a drug-loading platform for Rg3 so that more Rg3 reaches the tumor site to achieve obvious synergistic effect with nanocatalysts. Rg3-sheltered dynamic nanocatalysts can simultaneously activate ferroptosis and apoptosis to significantly improve anticancer efficacy. Systematic administration of ginsenoside Rg3-sheltered nanocatalysts inhibited 86.6% of tumor growth without toxicity and prolonged the survival time of mice. This study provides a promising approach of nanomedicine with high biosafety and a new outlook for catalytic ferroptosis-apoptosis combined antitumor therapies. STATEMENT OF SIGNIFICANCE: Chemodynamic therapy (CDT) has limited clinical efficacy in cancer. In this study, we developed Rg3-sheltered dynamic nanocatalysts, which could simultaneously activate ferroptosis based on CDT-activated apoptosis, and ultimately form a combined therapy of ferroptosis-apoptosis to kill tumors. Studies have shown that the nanocatalysts after Rg3 surface engineering dramatically alters the pharmacokinetics and organ distribution of the nanocatalysts after being systematically administered, resulting in avoiding the toxicity of the nanocatalysts. Nanocatalysts also act as a drug-loading platform, guiding more Rg3 into the tumor site. This study emphasizes that nanocatalysts after Rg3 surface engineering improve the safety and effectiveness of ferroptosis-apoptosis combined therapy, providing an effective idea for clinical practices.


Assuntos
Ferroptose , Ginsenosídeos , Animais , Apoptose , Linhagem Celular Tumoral , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Camundongos
9.
Front Oncol ; 12: 875146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664775

RESUMO

Keratin 8 (KRT8) is the major component of the intermediate filament cytoskeleton and aberrant expression in multiple tumors. However, the role of KRT8 in lung adenocarcinoma (LUAD) remains unclear. In the present study, KRT8 expression was found to be upregulated along with prognosis and metastasis in LUAD. Kaplan-Meier analysis presented that the 5-year OS and DSS rates were significantly better among patients with low KRT8 expression compared to those with high expression. Correlation analysis showed that KRT8 expression was significantly associated with gender (P = 0.027), advanced T stage (P = 0.001), advanced N stage (P = 0.048), and advanced pathologic stage (P = 0.025). Univariate Cox analysis demonstrated that KRT8 was a predictor of OS [hazard ratio (HR) = 1.526; 95% confidence interval (CI) 1.141-2.040; P = 0.004] and DSS (HR = 1.625; 95% CI 1.123-2.353; P = 0.010) in the TCGA database. Importantly, downregulation of KRT8 obviously suppressed cell proliferation, cell migration, invasion, and EMT as well as induced cell apoptosis. KRT8 knockdown significantly inhibited NF-κB signaling, suggesting a potential mechanism. Overall, our results indicated that KRT8 could regulate lung carcinogenesis and may serve as a potential target for antineoplastic therapies.

10.
Theranostics ; 12(9): 4250-4268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35673566

RESUMO

Background: Despite their outstanding properties in high surface-to-volume ratio and deep penetration, the application of ultrasmall nanoparticles for tumor theranostics remains limited because of their dissatisfied targeting performance and short blood circulation lifetime. Various synthetic materials with complex structures have been prepared as a multifunctional platform for loading ultrasmall nanoparticles. However, their use in nanomedicine is restricted because of unknown metabolic processes and potential physiological toxicity. Therefore, versatile and biocompatible nanoplatforms need to be designed through a simple yet effective method for realizing specific delivery and responsible release of ultrasmall nanoparticles. Methods: Iron-gallic acid coordination polymer nanodots (FeCNDs) exhibits outstanding photothermal ability and Fenton catalytic performance, which can be applied for tumor inhibition via hyperthermia and reactive oxygen species. A pH-responsive platelet-based hybrid membrane (pH-HCM) was prepared via co-extrusion and acted as a safe nanoplatform to load FeCNDs (pH-HCM@FeCNDs). Subsequently, their responsive performance and penetration ability were valued considering the multicellular sphere (MCS) model in an acidic or neutral environment. Thereafter, in vivo fluorescence image was performed to assess targeting capability of pH-HCM@FeCNDs. Finally, the corresponding antitumor and antimetastatic effects on orthotropic breast cancer were investigated. Results: In 4T1 MCS model, pH-HCM@FeCNDs group exhibited higher penetration efficiency (72.84%) than its non-responsive counterparts (17.77%) under an acidic environment. Moreover, the fluorescence intensity in pH-HCM@FeCNDs group was 3.18 times higher than that in group without targeting performance in the in vivo fluorescence image experiment. Finally, through in vivo experiments, pH-HCM@FeCNDs was confirmed to exhibit the best antitumor effect (90.33% tumor reduction) and antimetastatic effects (only 0.29% tumor coverage) on orthotropic breast cancer. Conclusions: Hybrid cell membrane was an ideal nanoplatform to deliver nanodots because of its good responsibility, satisfactory targeting ability, and excellent biocompatibility. Consequently, this study provides novel insights into the delivery and release of nanodots in a simple but effect method.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Nanopartículas , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Feminino , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas/química
11.
Front Oncol ; 12: 842312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392235

RESUMO

The expression of the SRY-Box Transcription Factor 15 (Sox15) is reduced by DNA methylation, and its progression is suppressed within numerous tumors. However, its effect on hepatocellular carcinoma (HCC) remains unknown. In the present work, the clinical importance and function of Sox15, as well as the underlying molecular mechanism, were explored within HCC. The expression of Sox15 is reduced and positively correlated with prognosis in HCC as analyzed by GEPIA (Gene Expression Profiling Interactive Analysis) and OncoLnc. Meanwhile, the hypermethylated Sox15 promoter CpG-site predicted a dismal HCC prognosis. Besides, ectopic Sox15 expression within the HCC cells (LM3, HUH7, SK-hep-1) remarkably inhibited in vitro cell growth and inhibited xenograft tumorigenesis in the nude mice. Moreover, Sox15 inactivated the Wnt pathway under both in vivo and in vitro conditions. To summarize, Sox15 played a tumor suppressor role within the HCC via the inactivated Wnt pathway. Sox15 and CpG-site methylation of its promoter are the factors that independently predict the prognosis of HCC.

12.
Bioact Mater ; 9: 134-146, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34820561

RESUMO

Both of the surface topographical features and distribution of biochemical cues can influence the cell-substrate interactions and thereby tissue regeneration in vivo. However, they have not been combined simultaneously onto a biodegradable scaffold to demonstrate the synergistic role so far. In this study, a proof-of-concept study is performed to prepare micropatterns and peptide gradient on the inner wall of a poly (D,L-lactide-co-caprolactone) (PLCL) guidance conduit and its advantages in regeneration of peripheral nerve in vivo. After linear ridges/grooves of 20/40 µm in width are created on the PLCL film, its surface is aminolyzed in a kinetically controlled manner to obtain the continuous gradient of amino groups, which are then transferred to CQAASIKVAV peptide density gradient via covalent coupling of glutaraldehyde. The Schwann cells are better aligned along with the stripes, and show a faster migration rate toward the region of higher peptide density. Implantation of the nerve guidance conduit made of the PLCL film having both the micropatterns and peptide gradient can significantly accelerate the regeneration of sciatic nerve in terms of rate, function recovery and microstructures, and reduction of fibrosis in muscle tissues. Moreover, this nerve conduit can also benefit the M2 polarization of macrophages and promote vascularization in vivo.

13.
Adv Mater ; 34(7): e2106388, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34821416

RESUMO

To promote the clinical theranostic performances of platinum-based anticancer drugs, imaging capability is urgently desired, and their chemotherapeutic efficacy needs to be upgraded. Herein, a theranostic metallacycle (M) is developed for imaging-guided cancer radio-chemotherapy using perylene bisimide fluorophore (PPy) and tetraphenylethylene-based di-Pt(II) organometallic precursor (TPE-Pt) as building blocks. The formation of this discrete supramolecular coordination complex facilitates the encapsulation of M by a glutathione (GSH)-responsive amphiphilic block copolymer to prepare M-loaded nanoparticles (MNPs). TPE-Pt acts as a chemotherapeutic drug and also an excellent radiosensitizer, thus incorporating radiotherapy into the nanomedicine to accelerate the therapeutic efficacy and overcome drug resistance. The NIR-emission of PPy is employed to detect the intracellular delivery and tissue distribution of MNPs in real time. In vitro and in vivo investigations demonstrate the excellent anticancer efficacy combining chemotherapy and radiotherapy; the administration of this nanomedicine effectively inhibits the tumor growth and greatly extends the survival rate of cisplatin-resistant A2780CIS-tumor-bearing mice. Guided by in vivo fluorescence imaging, radio-chemotherapy is precisely carried out, which facilitates boosting of the therapeutic outcomes and minimizing undesired side effects. The success of this theranostic system brings new hope to supramolecular nanomedicines for their potential clinical translations.


Assuntos
Nanopartículas , Neoplasias , Animais , Linhagem Celular Tumoral , Corantes Fluorescentes/uso terapêutico , Imidas , Camundongos , Nanopartículas/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Perileno/análogos & derivados , Estilbenos , Nanomedicina Teranóstica/métodos
14.
Carbohydr Polym ; 271: 118428, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364568

RESUMO

Emergent and long-term hemorrhage control is requisite and beneficial for reducing global mortality and postoperative complications (e.g., second bleeding and adverse tissue adhesion). Despite recent advance in injectable hydrogels for hemostasis, achieving rapid gelation, strong tissue-adhesive property and stable mechanical strength under fluid physiological environment is still challenging. Herein, we developed a novel chitosan hydrogel (CCS@gel) via dynamic Schiff base reaction and mussel-inspired catechol chemistry. The hydrogel possessed high gelation rate (<10 s), strong wet adhesiveness, excellent self-healing performance and biocompatibility. More importantly, the CCS@gel exhibited saline-induced contractile performance and mechanical enhancement, promoting its mechanical property in moist internal conditions. In vivo studies demonstrated its superior hemostatic efficacy for diverse anticoagulated visceral and carotid bleeding scenarios, compared to commercialized fibrin glue. The hydrogel-treated rats survived for 8 weeks with minimal inflammation and postoperative adhesion. These results revealed that the promising CCS@gel would be a facile, efficient and safe sealant for clinical hemorrhage control.


Assuntos
Quitosana/farmacologia , Hemorragia/terapia , Hemostáticos/farmacologia , Hidrogéis/farmacologia , Adesivos Teciduais/farmacologia , Cicatrização/efeitos dos fármacos , Adesividade , Animais , Bandagens , Lesões das Artérias Carótidas/terapia , Quitosana/síntese química , Técnicas Hemostáticas/instrumentação , Hemostáticos/síntese química , Hidrogéis/síntese química , Fígado/lesões , Masculino , Polietilenoglicóis/síntese química , Polietilenoglicóis/farmacologia , Ratos Sprague-Dawley , Bases de Schiff/síntese química , Bases de Schiff/farmacologia , Baço/lesões , Adesivos Teciduais/síntese química , Técnicas de Fechamento de Ferimentos/instrumentação
15.
Front Microbiol ; 12: 649091, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276585

RESUMO

Nanosecond pulsed electric field (nsPEF) is a novel ablation technique that is based on high-intensity electric voltage to achieve tumour-killing effect in the target region, and increasingly considered for treating tumours of the liver, kidneys and other organs with rich blood supply. This study aims to observe effect of nsPFE treatment on serum metabolites and gut microbiota. The serum and faecal specimens of the pigs were collected pre- and post-treatment. The gut microbiota of pigs was sequenced by Illumina Miseq platform for analysing the diversity and alterations of gut microbiota. Liquid chromatography-mass spectrometry (LC-MS)-based metabonomic analysis and Pearson coefficient method were also used to construct the interaction system of different metabolites, metabolic pathways and flora. A total of 1,477 differential metabolites from the serum were identified by four cross-comparisons of different post-operative groups with the control group. In addition, an average of 636 OTUs per sample was detected. Correlation analysis also revealed the strong correlation between intestinal bacteria and differential metabolites. The nsPEF ablation of the liver results in a degree of liver damage that affects various metabolic pathways, mainly lipid metabolism, as well as gut microbiota. In conclusion, our study provided a good point for the safety and feasibility of applying nsPEF on liver through the integrated analysis of metabolomics and microbiomes, which is beneficial for the improvement of nsPEF in clinical use.

16.
Nanoscale Adv ; 4(1): 190-199, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36132964

RESUMO

Nanozymes have limited applications in clinical practice due to issues relating to their safety, stability, biocompatibility, and relatively low catalytic activity in the tumor microenvironment (TME) in vivo. Herein, we report a synergistic enhancement strategy involving the conjugation of metal-based nanozymes (Fe@Fe3O4) with natural bioactive organic molecules (ginsenoside Rg3) to establish a new nanodrug. Importantly, this metal-organic nanocomposite drug ensured the stability and biosafety of the nanozyme cores and the cellular uptake efficiency of the whole nanodrug entity. This nanodrug is based on integrating the biological characteristics and intrinsic physicochemical properties of bionics. The glycoside chain of Rg3 forms a hydrophilic layer on the outermost layer of the nanodrug to improve the biocompatibility and pharmacokinetics. Additionally, Rg3 can activate apoptosis and optimize the activity and status of normal cells. Internal nanozymes enter the TME and release Fe3+ and Fe2+, and the central metal Fe(0) continuously generates highly active Fe2+ under the conditions of the TME and in the presence of Fe3+, maintaining the catalytic activity. Therefore, these nanozymes can effectively produce reactive oxygen species and oxygen in the TME, thereby promoting the apoptosis of cancer cells. Thus, we propose the use of a new type of metal-organic nanocomposite material as a synergistic strategy against cancer.

17.
Small ; 16(48): e2005038, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33169516

RESUMO

The excessive reactive oxygen species (ROS) and hypoxia deteriorate the inflammation-related diseases such as myocardial infarction (MI), and thereby deter the normal tissue repair and recovery and further lead to severe fibrosis and malfunction of tissues and organs. In particular, the MI has become one of the leading causes of death nowadays. In this study, a novel type of injectable hydrogel with dual functions of ROS scavenging and O2 generating is fabricated for MI treatment in vivo. The hydrogel is formed within 3 s from the synthetic ROS-cleavable hyperbranched polymers and methacrylate hyaluronic acid (HA-MA) under UV-irradiation. Addition of biocompatible and applicable catalase in vivo enables the further transition of H2 O2 , a major type of ROS, to O2 and H2 O. Results of rat MI model demonstrate that this hydrogel can significantly remove excessive ROS, inhibit cell apoptosis, increase M2/M1 macrophage ratio, promote angiogenesis, reduce infarcted area, and improve cardiac functions. With the appropriate degradation rate, simple structure and composition without cell seeding, and very excellent MI therapeutic effect, this ROS scavenging and O2 generating hydrogel has a great promise to be applied clinically.


Assuntos
Hidrogéis , Infarto do Miocárdio , Animais , Ácido Hialurônico , Infarto do Miocárdio/tratamento farmacológico , Ratos , Espécies Reativas de Oxigênio , Cicatrização
18.
ACS Nano ; 14(8): 9711-9727, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32806075

RESUMO

Autophagy triggered by reactive oxygen species (ROS) in photodynamic therapy (PDT) generally exhibits an anti-apoptotic effect to promote cell survival. Herein, an innovative supramolecular nanoplatform was fabricated for enhanced PDT by converting the role of autophagy from pro-survival to pro-death. The respiration inhibitor 3-bromopyruvate (3BP), which can act as an autophagy promoter and hypoxia ameliorator, was integrated into photosensitizer chlorin e6 (Ce6)-encapsulated nanoparticles to combat hypoxic tumor. 3BP could inhibit respiration by down-regulating HK-II and GAPDH expression to significantly reduce intracellular oxygen consumption rate, which could relieve tumor hypoxia for enhanced photodynamic cancer therapy. More importantly, the autophagy level was significantly elevated by the combination of 3BP and PDT determined by Western blot, immunofluorescent imaging, and transmission electron microscopy. It was very surprising that excessively activated autophagy promoted cell apoptosis, leading to the changeover of autophagy from pro-survival to pro-death. Therefore, PDT combined with 3BP could achieve efficient cell proliferation inhibition and tumor regression. Furthermore, hypoxia-inducible factor-1α (HIF-1α) could be down-regulated after tumor hypoxia was relieved by 3BP. Tumor metastasis could then be effectively inhibited by eliminating primary tumors and down-regulating HIF-1α expression. These results provide an inspiration for future innovative approaches of cancer therapy by triggering pro-death autophagy.


Assuntos
Neoplasias , Fotoquimioterapia , Porfirinas , Autofagia , Linhagem Celular Tumoral , Humanos , Hipóxia/tratamento farmacológico , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/farmacologia , Porfirinas/uso terapêutico , Piruvatos
19.
J Mater Chem B ; 8(32): 7253-7263, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32638824

RESUMO

The combination of different modalities greatly enhances the anticancer efficacy of each treatment by combining their merits, showing promising potential in clinical translation. Herein, we fabricated cancer cell membrane-coated gold nanorods (GNR@Mem) possessing excellent photothermal transfer ability in the second near-infrared window and radiosensitizing ability under X-ray irradiation. The cancer cell membrane coating endowed the nanomedicine with stability in the physiological environment and selective homotypic targeting to specific cancer cells in vitro. Under NIR light and X-ray irradiation, the gold nanorods induced a temperature increase, reactive oxygen generation, and subsequent damage to the DNA helix structure, leading to enhanced cell apoptosis. Benefitting from its relative long circulation time in the blood and homotypic targeting effect, the tumor accumulation of GNR@Mem significantly increased. The in vivo results demonstrate that the combination of photothermal therapy and radiotherapy effectively suppresses tumor growth without noticeable systemic toxicity.


Assuntos
Carcinoma de Células Escamosas/patologia , Membrana Celular/efeitos da radiação , Ouro/química , Neoplasias Bucais/patologia , Nanotubos/química , Terapia Fototérmica/métodos , Carcinoma de Células Escamosas/radioterapia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Neoplasias Bucais/radioterapia
20.
Biomed Res Int ; 2020: 3635787, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32258116

RESUMO

Nanosecond pulsed electric field (nsPEF) has emerged as a promising tool for hepatocellular carcinoma ablation recently. However, little is known about how nsPEF affects liver regeneration while being applied to eliminate liver lesions. Besides, the impact of nsPEF ablation on liver function should also be taken into consideration in the process. In this paper, we study the impact of nsPEF ablation on liver function by the measurement of serum levels of AST and ALT as well as liver regeneration and relevant molecular mechanisms in vivo. We found that mouse liver function exhibited a temporary injury without weight loss after ablation. In addition, local hepatic nsPEF ablation promoted significant proliferation of hepatocytes of the whole liver with an increase in HGF level. Moreover, the proliferation of hepatocytes was dramatically inhibited by the inhibitor of c-Met. Of interest, the periablational area is characterized by high level of PDGF and a large amount of activated hepatic stellate cells. Furthermore, neutralizing PDGF was able to significantly inhibit liver regeneration, the increased HGF level, and the accumulation of activated HSCs. Our findings demonstrated that nsPEF not only was a safe ablation approach but also could stimulate the regeneration of the whole liver through the activation of the HGF/c-Met pathway by upregulation of PDGF within the periablational zone.


Assuntos
Fator de Crescimento de Hepatócito/genética , Regeneração Hepática/genética , Fator de Crescimento Derivado de Plaquetas/genética , Proteínas Proto-Oncogênicas c-met/genética , Animais , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Radiação Eletromagnética , Regulação da Expressão Gênica/efeitos da radiação , Hepatócitos/efeitos da radiação , Humanos , Fígado/crescimento & desenvolvimento , Fígado/patologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Regeneração Hepática/efeitos da radiação , Camundongos , Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Ativação Transcricional/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA