Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(46): 55648-55655, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34779602

RESUMO

Current infrared thermal image sensors are mainly based on planar firm substrates, but the rigid form factor appears to restrain the versatility of their applications. For wearable health monitoring and implanted biomedical sensing, transfer of active device layers onto a flexible substrate is required while controlling the high-quality crystalline interface. Here, we demonstrate high-detectivity flexible InAs thin-film mid-infrared photodetector arrays through high-yield wafer bonding and a heteroepitaxial lift-off process. An abruptly graded InxAl1-xAs (0.5 < x < 1) buffer was found to drastically improve the lift-off interface morphology and reduce the threading dislocation density twice, compared to the conventional linear grading method. Also, our flexible InAs photodetectors showed excellent optical performance with high mechanical robustness, a peak room-temperature specific detectivity of 1.21 × 109 cm-Hz1/2/W at 3.4 µm, and excellent device reliability. This flexible InAs photodetector enabled by the heteroepitaxial lift-off method shows promise for next-generation thermal image sensors.

2.
ACS Appl Mater Interfaces ; 13(11): 13248-13253, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33691400

RESUMO

Lightweight, flexible solar cells from III-V semiconductors offer new application opportunities for devices that require a power supply, such as cars, drones, satellites, or wearable devices, due to their outstanding efficiency and power-to-weight ratio (specific power). However, the specific power and stability of flexible photovoltaic (PV) devices need to be enhanced for use in such applications because current flexible PV devices are vulnerable to moisture and heat. Here, we develop ultra-lightweight, flexible InGaP/GaAs tandem solar cells with a dual-function encapsulation layer that serves as both a moisture barrier and an antireflection coating for the active device layer. Using a thin polymer film as a substrate and an ultrathin metal as a bonding layer, the total weight of the device is dramatically reduced. Therefore, the specific power of our solar cells is remarkably high with a value of over 5000 W/kg under the AM 1.5G solar spectrum. Additionally, there is no degradation even if the solar cells are exposed to harsh environmental conditions.

3.
Opt Express ; 28(24): 36559-36567, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379747

RESUMO

We demonstrate flexible GaAs photodetector arrays that were hetero-epitaxially grown on a Si wafer for a new cost-effective and reliable wearable optoelectronics platform. A high crystalline quality GaAs layer was transferred onto a flexible foreign substrate and excellent retention of device performance was demonstrated by measuring the optical responsivities and dark currents. Optical simulation proves that the metal stacks used for wafer bonding serve as a back-reflector and enhance GaAs photodetector responsivity via a resonant-cavity effect. Device durability was also tested by bending 1000 times and no performance degradation was observed. This work paves a way for a cost-effective and flexible III-V optoelectronics technology with high durability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA