Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 108(26): 10650-5, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21670307

RESUMO

Interaction of cell surface glycoproteins with endogenous lectins on the cell surface regulates formation and maintenance of plasma membrane domains, clusters signaling complexes, and controls the residency time of glycoproteins on the plasma membrane. Galectin-9 is a soluble, secreted lectin that binds to glycoprotein receptors to form galectin-glycoprotein lattices on the cell surface. Whereas galectin-9 binding to specific glycoprotein receptors induces death of CD4 Th1 cells, CD4 Th2 cells are resistant to galectin-9 death due to alternative glycosylation. On Th2 cells, galectin-9 binds cell surface protein disulfide isomerase (PDI), increasing retention of PDI on the cell surface and altering the redox status at the plasma membrane. Cell surface PDI regulates integrin function on platelets and also enhances susceptibility of T cells to infection with HIV. We find that galectin-9 binding to PDI on Th2 cells results in increased cell migration through extracellular matrix via ß3 integrins, identifying a unique mechanism to regulate T-cell migration. In addition, galectin-9 binding to PDI on T cells potentiates infection with HIV. We identify a mechanism for regulating cell surface redox status via a galectin-glycoprotein lattice, to regulate distinct T-cell functions.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Movimento Celular , Galectinas/metabolismo , HIV-1/fisiologia , Fusão de Membrana , Isomerases de Dissulfetos de Proteínas/metabolismo , Animais , Western Blotting , Linhagem Celular , Membrana Celular/metabolismo , Eletroforese em Gel de Poliacrilamida , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Ligação Proteica
2.
Proc Natl Acad Sci U S A ; 107(7): 3157-62, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20133606

RESUMO

We describe an antiviral small molecule, LJ001, effective against numerous enveloped viruses including Influenza A, filoviruses, poxviruses, arenaviruses, bunyaviruses, paramyxoviruses, flaviviruses, and HIV-1. In sharp contrast, the compound had no effect on the infection of nonenveloped viruses. In vitro and in vivo assays showed no overt toxicity. LJ001 specifically intercalated into viral membranes, irreversibly inactivated virions while leaving functionally intact envelope proteins, and inhibited viral entry at a step after virus binding but before virus-cell fusion. LJ001 pretreatment also prevented virus-induced mortality from Ebola and Rift Valley fever viruses. Structure-activity relationship analyses of LJ001, a rhodanine derivative, implicated both the polar and nonpolar ends of LJ001 in its antiviral activity. LJ001 specifically inhibited virus-cell but not cell-cell fusion, and further studies with lipid biosynthesis inhibitors indicated that LJ001 exploits the therapeutic window that exists between static viral membranes and biogenic cellular membranes with reparative capacity. In sum, our data reveal a class of broad-spectrum antivirals effective against enveloped viruses that target the viral lipid membrane and compromises its ability to mediate virus-cell fusion.


Assuntos
Antivirais/farmacologia , Rodanina/análogos & derivados , Viroses/tratamento farmacológico , Internalização do Vírus/efeitos dos fármacos , Animais , Antivirais/uso terapêutico , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Rodanina/química , Rodanina/farmacologia , Rodanina/uso terapêutico , Relação Estrutura-Atividade , Proteínas do Envelope Viral/metabolismo
3.
J Virol ; 81(15): 8325-36, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17522223

RESUMO

Human immunodeficiency virus type 1 (HIV-1) envelope (gp120) binding to DC-SIGN, a C-type lectin that can facilitate HIV infection in cis and in trans, is largely dependent on high-mannose-content moieties. Here, we delineate the N-linked glycosylation (N-glycan) sites in gp120 that contribute to optimal DC-SIGN binding. Soluble DC-SIGN was able to block 2G12 binding to gp120, but not vice versa, suggesting that DC-SIGN binds to a more flexible combination of N-glycans than 2G12. Consistent with this observation, HIV strain JRCSF gp120 prebound to 2G12 was 10-fold more sensitive to mannan competition than gp120 that was not prebound in a DC-SIGN cell surface binding assay. The analysis of multiple mutant forms of the 2G12 epitope revealed one triple glycosylation mutant form, termed 134mut (carrying N293Q, N382Q, and N388Q mutations), that exhibited a significant increase in sensitivity to both mannan competition and endoglycosidase H digestion compared to that of the 124mut form (carrying N293Q, N328Q, and N388Q mutations) and wild-type gp120 in a DC-SIGN binding assay. Importantly, no such differences were observed when binding to Galanthus nivalis was assessed. The 134mut form of gp120 also exhibited decreased binding to DC-SIGN in the context of native envelope spikes on a virion, and virus bearing 134mut exhibited less efficient DC-SIGN-mediated infection in trans. Significantly, 124mut and 134mut differed by only one glycosylation site mutation in each construct, and both 124mut and 134mut viruses exhibited wild-type levels of infectivity when used in a direct infection assay. In summary, while DC-SIGN can bind to a flexible combination of N-glycans on gp120, its optimal binding site overlaps with specific N-glycans within the 2G12 epitope. Conformationally intact envelopes that are DC-SIGN binding deficient can be used to probe the in vivo biological functions of DC-SIGN.


Assuntos
Moléculas de Adesão Celular/metabolismo , Epitopos , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Lectinas Tipo C/metabolismo , Receptores de Superfície Celular/metabolismo , Sítios de Ligação , Moléculas de Adesão Celular/genética , Linhagem Celular , Glicosilação , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Humanos , Lectinas Tipo C/genética , Modelos Moleculares , Dados de Sequência Molecular , Polissacarídeos/química , Polissacarídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Superfície Celular/genética
4.
J Virol ; 76(24): 12855-65, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12438611

RESUMO

The calcium-dependent lectin, DC-SIGN, binds to human immunodeficiency virus (HIV) (and simian immunodeficiency virus) gp120 and mediates the binding and transfer of HIV from monocyte-derived dendritic cells (MDDCs) to permissive T cells. However, it has been recently reported that DC-SIGN binding to HIV gp120 may be carbohydrate independent. Here, we formally demonstrate that gp120 binding to DC-SIGN and MDDCs is largely if not wholly carbohydrate dependent. Endo-beta-N-glucosaminidase H (EndoH) treatment of gp120-Fc under conditions that maintained wild-type CD4 binding-and the full complement of complex glycans-significantly decreased (>90%) binding to DC-SIGN expressing cell lines, as well as to MDDCs. Any residual binding of EndoH-treated gp120-Fc to DC-SIGN was completely competed off with mannan. Mutational analysis indicated that no single glycosylation site affected the ability of gp120-Fc to bind DC-SIGN. To further guide our efforts in mapping the DC-SIGN binding sites on gp120, we used two well-characterized HIV inhibitory agents (2G12 monoclonal antibody and cyanovirin) that bind to high-mannose sugars on gp120. We showed that 2G12 and DC-SIGN bound to nonoverlapping sites in gp120 because (i) 2G12 did not block soluble gp120 or virion binding to DC-SIGN, (ii) 2G12 bound to gp120-Fc that was prebound to cell surface DC-SIGN, and (iii) gp120-Fc mutants that lack glycosylation sites involved in 2G12's epitope were also fully capable of binding DC-SIGN. These data were substantiated by the inability of cyanovirin to block gp120-Fc binding to DC-SIGN. Cyanovirin has been shown to effectively compete for 2G12 binding to gp120. Indeed, high concentrations of cyanovirin dramatically enhanced gp120-Fc binding to cell surfaces in the presence or absence of DC-SIGN. We provide evidence that this enhancement may be due to cyanovirin's ability to bridge gp120 to mannosylated cell surface proteins. These results have implications for antiviral therapeutics and for ongoing efforts to finely map the glycan structures on gp120 responsible for DC-SIGN binding.


Assuntos
Anticorpos Monoclonais/metabolismo , Proteínas de Bactérias , Proteínas de Transporte/metabolismo , Moléculas de Adesão Celular/metabolismo , Células Dendríticas/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Lectinas Tipo C/metabolismo , Manose/metabolismo , Receptores de Superfície Celular/metabolismo , Sítios de Ligação , Ligação Competitiva , Moléculas de Adesão Celular/química , Linhagem Celular , Glicosilação , Proteína gp120 do Envelope de HIV/química , Humanos , Lectinas Tipo C/química , Manose/química , Receptores de Superfície Celular/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA