Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 143: 224-234, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38644019

RESUMO

Hexavalent chromium and its compounds are prevalent pollutants, especially in the work environment, pose a significant risk for multisystem toxicity and cancers. While it is known that chromium accumulation in the liver can cause damage, the dose-response relationship between blood chromium (Cr) and liver injury, as well as the possible potential toxic mechanisms involved, remains poorly understood. To address this, we conducted a follow-up study of 590 visits from 305 participants to investigate the associations of blood Cr with biomarkers for liver injury, including serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), and direct bilirubin (DBIL), and to evaluate the mediating effects of systemic inflammation. Platelet (PLT) and the platelet-to-lymphocyte ratio (PLR) were utilized as biomarkers of systemic inflammation. In the linear mixed-effects analyses, each 1-unit increase in blood Cr level was associated with estimated effect percentage increases of 0.82% (0.11%, 1.53%) in TBIL, 1.67% (0.06%, 3.28%) in DBIL, 0.73% (0.04%, 1.43%) in ALT and 2.08% (0.29%, 3.87%) in AST, respectively. Furthermore, PLT mediated 10.04%, 11.35%, and 10.77% increases in TBIL, DBIL, and ALT levels induced by chromate, respectively. In addition, PLR mediated 8.26% and 15.58% of the association between blood Cr and TBIL or ALT. These findings shed light on the mechanisms underlying blood Cr-induced liver injury, which is partly due to worsening systemic inflammation.


Assuntos
Cromatos , Cromo , Inflamação , Humanos , Cromo/toxicidade , Cromo/sangue , Inflamação/sangue , Masculino , Cromatos/toxicidade , Cromatos/sangue , Adulto , Feminino , Pessoa de Meia-Idade , Biomarcadores/sangue , Exposição Ocupacional/efeitos adversos , Alanina Transaminase/sangue , Doença Hepática Induzida por Substâncias e Drogas/sangue , Aspartato Aminotransferases/sangue , Poluentes Ambientais/sangue , Poluentes Ambientais/toxicidade
2.
Environ Sci Technol ; 58(17): 7279-7290, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38629869

RESUMO

Exposure to hexavalent chromium damages genetic materials like DNA and chromosomes, further elevating cancer risk, yet research rarely focuses on related immunological mechanisms, which play an important role in the occurrence and development of cancer. We investigated the association between blood chromium (Cr) levels and genetic damage biomarkers as well as the immune regulatory mechanism involved, such as costimulatory molecules, in 120 workers exposed to chromates. Higher blood Cr levels were linearly correlated with higher genetic damage, reflected by urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and blood micronucleus frequency (MNF). Exploratory factor analysis revealed that both positive and negative immune regulation patterns were positively associated with blood Cr. Specifically, higher levels of programmed cell death protein 1 (PD-1; mediated proportion: 4.12%), programmed cell death ligand 1 (PD-L1; 5.22%), lymphocyte activation gene 3 (LAG-3; 2.11%), and their constitutive positive immune regulation pattern (5.86%) indirectly positively influenced the relationship between blood Cr and urinary 8-OHdG. NOD-like receptor family pyrin domain containing 3 (NLRP3) positively affected the association between blood Cr levels and inflammatory immunity. This study, using machine learning, investigated immune regulation and its potential role in chromate-induced genetic damage, providing insights into complex relationships and emphasizing the need for further research.


Assuntos
Cromatos , Aprendizado de Máquina , Humanos , Estudos Transversais , Poluentes Ambientais , Masculino , Dano ao DNA , Adulto , Feminino , Pessoa de Meia-Idade , Biomarcadores
3.
Environ Pollut ; 349: 123947, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608856

RESUMO

There is sufficient evidence suggesting that exposure to hexavalent chromium [Cr(VI)] can cause a decline in lung function and the onset of lung diseases. However, no studies have yet explored the underlying mechanisms of these effects from various perspectives such as systemic inflammation, oxidative stress, and cellular senescence, simultaneously. This cross-sectional study was conducted among 304 workers engaged in chromate production and processing in China. Urine was used for detection of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-iso-prostaglandin F2α (8-iso-PGF2α), while RNA and DNA extraction from peripheral blood cells was used for detection of mRNA, telomere length, and ribosomal DNA copy numbers (rDNA CNs). A 2.7-fold elevation in blood chromate (Cr) corresponded to a 7.86% (95% CI: 2.57%, 13.42%) rise in urinary 8-OHdG and a 4.14% (0.02%, 8.42%) increase in urinary 8-iso-PGF2α, indicating that exposure to chromates can cause oxidative stress. Furthermore, strong correlations emerged between blood Cr concentration and mRNA levels of P16, P21, TP53, and P15 in the cellular senescence pathway. Simultaneously, a 2.7-fold elevation in blood Cr associated with a -5.47% (-8.72%, -2.1%) change in telomere length, while rDNA CNs (5S, 5.8S, 18S, and 28S) changed by -3.91% (-7.99%, 0.34%), -9.4% (-15.73%, -2.6%), -8.06% (-14.01%, -1.69%), and -5.86% (-10.67%, -0.78%), respectively. Structural equation model highlighted that cellular senescence exerted significant indirect effects on Cr(VI)-associated lung function decline, with a mediation proportion of 23.3%. This study provided data supporting for 8-iso-PGF2α, telomere length, and rDNA CNs as novel biomarkers of chromate exposure, emphasizing the significant role of cellular senescence in the mechanism underlying chromate-induced lung function decline.


Assuntos
Senescência Celular , Cromo , Dinoprosta/análogos & derivados , Exposição Ocupacional , Estresse Oxidativo , Senescência Celular/efeitos dos fármacos , Cromo/toxicidade , Humanos , Estudos Transversais , Adulto , China , Masculino , Exposição Ocupacional/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Pessoa de Meia-Idade , Pulmão/efeitos dos fármacos , Feminino , 8-Hidroxi-2'-Desoxiguanosina , Cromatos/toxicidade
4.
Chemosphere ; 349: 140918, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072199

RESUMO

Hexavalent chromium [Cr(VI)], known as "Top Hazardous Substances", poses a significant threat to the respiratory system. Nevertheless, the potential mechanisms of toxicity and the lung's repair ability after injury remain incompletely understood. In this study, Cr(VI) aerosol whole-body dynamic exposure system simulating real exposure scenarios of chromate workers was constructed to evaluate the lung injury and repair effects. Subsequently, miRNA sequencing, mRNA sequencing and metabolomics analyses on lung tissue were performed to explore the underlying mechanisms. Our results revealed that Cr(VI) exposure led to an increase in lactic dehydrogenase activity and a time-dependent decline in lung function. Notably, after 13 w of Cr(VI) exposure, alveolar hemorrhage, thickening of alveolar walls, emphysema-like changes, mitochondrial damage of alveolar epithelial cells and macrophage polarization changes were observed. Remarkably, a two-week repair intervention effectively ameliorated lung function decline and pulmonary injury. Furthermore, significant disruptions in the expressions of miRNAs and mRNAs involved in oxidative phosphorylation, glycerophospholipid metabolism and inflammatory signaling pathways were found. The two-week repair period resulted in the reversal of expression of oxidative phosphorylation related genes, and inhibited the inflammatory signaling pathways. This study concluded that the inhibition of the mitochondrial oxidative phosphorylation pathway and the subsequent enhancement of inflammatory response might be key mechanisms underlying Cr(VI) pulmonary toxicity, and timely cessation of exposure could effectively alleviate the pulmonary injury. These findings shed light on the potential mechanisms of Cr(VI) toxicity and provide crucial insights into the health protection for occupational populations exposed to Cr(VI).


Assuntos
Lesão Pulmonar , Humanos , Lesão Pulmonar/induzido quimicamente , Aerossóis e Gotículas Respiratórios , Cromo/toxicidade , Pulmão
5.
Asian J Pharm Sci ; 18(6): 100868, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38089836

RESUMO

Several crucial stromal cell populations regulate hematopoiesis and malignant diseases in bone marrow niches. Precise regulation of these cell types can remodel niches and develop new therapeutics. Multiple nanocarriers have been developed to transport drugs into the bone marrow selectively. However, the delivery efficiency of these nanotherapeutics into crucial niche cells is still unknown, and there is no method available for predicting delivery efficiency in these cell types. Here, we constructed a three-dimensional bone marrow niche composed of three crucial cell populations: endothelial cells (ECs), mesenchymal stromal cells (MSCs), and osteoblasts (OBs). Mimetic niches were used to detect the cellular uptake of three typical drug nanocarriers into ECs/MSCs/OBs in vitro. Less than 5% of nanocarriers were taken up by three stromal cell types, and most of them were located in the extracellular matrix. Delivery efficiency in sinusoidal ECs, arteriole ECs, MSCs, and OBs in vivo was analyzed. The correlation analysis showed that the cellular uptake of three nanocarriers in crucial cell types in vitro is positively linear correlated with its delivery efficiency in vivo. The delivery efficiency into MSCs was remarkably higher than that into ECs and OBs, no matter what kind of nanocarrier. The overall efficiency into sinusoidal ECs was greatly lower than that into arteriole ECs. All nanocarriers were hard to be delivered into OBs (<1%). Our findings revealed that cell tropisms of nanocarriers with different compositions and ligand attachments in vivo could be predicted via detecting their cellular uptake in bone marrow niches in vitro. This study provided the methodology for niche-directed nanotherapeutics development.

6.
J Hazard Mater ; 452: 131294, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37023571

RESUMO

Hexavalent chromium [Cr(VI)] compounds, known as "Group I Human Carcinogen" and "Category I Respiratory Sensitizer", posed great challenges to the respiratory system. A cross-sectional study was undertaken among chromate workers. Serum club cell protein 16 (CC16) and soluble urokinase-type plasminogen activator receptor (suPAR) were measured using ELISA. Thirteen macrophage-related mediators were tested using cytometric bead array. After controlling for sex, age, smoking status, drinking status and BMI, each increase of one-unit of Ln-transformed blood Cr was related to the increase of IL-1beta [Beta (95% CI), 7.22(1.14, 13.29)%, P = 0.021], IL-23 [8.5(1.15, 15.85)%, P = 0.021], IFN-gamma [3.14(0.15, 6.13)%, P = 0.040], and suPAR [9.31(2.5, 16.12) %, P = 0.008], as well as the increase of CC16 by 3.88(0.42, 7.34) % (P = 0.029). Moreover, these inflammatory mediators played an mediation role in the rise of CC16 caused by Cr(VI). The exposure-response curve analysis revealed a substantial nonlinear association of IFN-gamma and suPAR with CC16, thus the mediation effect of INF-gamma and suPAR required cautious interpretation. The positive connection between macrophage-related mediators was stronger in the high exposure group than in the low exposure group, suggesting that high concentration of chromate might promote a complex interplay within the immune system.


Assuntos
Cromatos , Lesão Pulmonar , Humanos , Cromatos/toxicidade , Lesão Pulmonar/induzido quimicamente , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Estudos Transversais , Inflamação/induzido quimicamente , Biomarcadores
7.
Environ Int ; 174: 107895, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36966638

RESUMO

Hexavalent chromium [Cr(VI)] is rarely found in nature. Its occurrence in the environment is mainly due to anthropogenic sources. Our previous studies have shown that Cr(VI) exposure could change the expression profile of long noncoding RNAs (lncRNAs). However, the relationship between lncRNAs and genetic damage induced by Cr(VI) remains unclear. In this study, RT-qPCR was used to verify the expression of genes and lncRNAs involved in DNA damage repair in BEAS-2B cells exposed to different Cr(VI) concentrations. After screening out LNC-DHFR-4:1, overexpression and knockdown models of BEAS-2B cells were used to further identify the relationship between the lncRNA and RAD51. RT-qPCR and indirect immunofluorescence were used to detect expression. Our results revealed that with increasing Cr(VI) concentration, γH2AX expression was increased, while the expression of RAD51 was decreased. Meanwhile, LNC-DHFR-4:1 acted as a competitive endogenous RNA to regulate the expression of γH2AX and RAD51, which further affected DNA damage repair. The overexpression of LNC-DHFR-4:1 induced a twofold decrease in γH2AX and a onefold increase in RAD51, and its knockdown showed the opposite results. These results suggested that LNC-DHFR-4:1 might be a potential biomarker of Cr(VI)-induced DNA damage repair in BEAS-2B cells.


Assuntos
RNA Longo não Codificante , Linhagem Celular , Cromo/toxicidade , Dano ao DNA , RNA Longo não Codificante/genética , Histonas/metabolismo
8.
Environ Pollut ; 319: 121055, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36632972

RESUMO

Short-term heavy air pollution still occurs frequently worldwide, especially during the winter heating period in some developing countries, which is usually accompanied by the temporary explosive growth of PM2.5. The pulmonary damage caused by PM2.5 exposure has been determined, but there have been few studies on the repair ability after the cessation of exposure and the important role of innate immune events. This study established a short-term (30 days) high-concentration (15 mg/kg body weight) PM2.5 exposure and recovery (15 days of exposure cessation) model by intratracheal instillation. The results showed that short-term PM2.5 exposure increased the content of collagen fiber in rat lung tissue, which was significantly repaired after recovery by 15 days of exposure cessation. Meanwhile, exposure to PM2.5 also caused changes in lung epithelial function, macrophage polarization and cell autophagy function. Most of these changes could be restored or reversed to a certain extent after recovery. However, there were also some biomarkers, including CLDN18.1, SP-A, SP-D, iNOS, CD206, Beclin1, p62 and LC3B, that were still significantly different between the exposure and control groups after recovery, suggesting that some toxic effects, especially epithelial function damage, were not completely repaired. In addition, there was a significant correlation between pulmonary fibrosis and innate immunity. The present study demonstrated that short-term high-concentration exposure to PM2.5 could cause temporary lung tissue damage and related innate immune events in rats, and the repair ability existed after the cessation of exposure, but part of the damage that required special attention still persisted.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ratos , Animais , Material Particulado/toxicidade , Pulmão , Imunidade Inata , Autofagia , Poluentes Atmosféricos/toxicidade
9.
Sci Total Environ ; 857(Pt 1): 159429, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36243064

RESUMO

Hexavalent chromium [Cr(VI)] has been identified as a "Group I human carcinogen" with multisystem and multiorgan toxicity. A dynamic inhalation exposure model in male mice, coupled with the hepatic metabolome and gut microbiome, was used to explore hepatotoxicity, and hepatic metabolic and gut microbial changes under the exposure scenarios in the workspace and general environment. The present study set up an exposure group (EXP) that inhaled 150 µg Cr/m3 for 13 weeks, a control group (CONT) that inhaled purified air, as well as a two-week repair group (REXP) after 13 weeks of exposure and the corresponding control group (RCONT). Cr(VI) induced elevation of hepatic Cr accumulation, the ratio of ALT and AST, and folate in serum. Inflammatory infiltration in the liver and abnormal mitochondria in hepatocytes were also induced by Cr(VI). Glutathione, ascorbate, folic acid, pantetheine, 3'-dephospho-CoA and citraconic acid were the key metabolites affected by Cr(VI) that were associated with significant pathways such as pantothenate and CoA biosynthesis, hypoxia-inducible factor-1 signaling pathway, antifolate resistance, alpha-linolenic acid metabolism and one carbon pool by folate. g_Allobaculum was identified as a sensitive biomarker of Cr(VI) exposure because g_Allobaculum decreased under Cr(VI) exposure but increased after repair. The gut microbiota might be involved in the compensation of hepatotoxicity by increasing short-chain fatty acid-producing bacteria, including g_Lachnospiraceae_NK4A136_group, g_Blautia, and f_Muribaculaceae. After the two-week repair, the differential metabolites between the exposed and control groups were reduced from 73 to 29, and the KEGG enrichment pathways and differential microbiota also decreased. The mechanism for repair was associated with reversion of lipid peroxidation and energy metabolism, as well as activation of protective metabolic pathways, such as the AMPK signaling pathway, longevity regulating pathway, and oxidative phosphorylation. These findings might have theoretical and practical implications for better health risk assessment and management.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Camundongos , Masculino , Humanos , Animais , Exposição por Inalação , Cromo/toxicidade , Ácido Fólico
10.
Biol Trace Elem Res ; 201(5): 2274-2283, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35859210

RESUMO

Hexavalent chromium (Cr(VI)) is a sort of common industrial poison and environmental pollutant posing great health threat to the population. Appropriate biomarkers are indispensable indicative tools in the biological monitoring and health risk assessment of Cr(VI). In this study, we explored the rationality and feasibility of whole blood Cr serving as the biomarker of internal exposure with corroboration drawn from literature review and Monte Carlo simulation. It was indicated that the whole blood Cr had practical operability in the large-scale population researches and robust biological significance with broad association with various Cr(VI)-related effect indices. The simulated distribution of whole blood Cr concentration in exposed populations was about three times higher than that of the control (13.52 ± 24.99 vs. 4.25 ± 11.37 µg/L, P < 0.05; 6.73 ± 10.92 µg/L vs. 1.96 ± 2.05 µg/L in China, P < 0.05), which suggested a great discriminatory ability that might be supported as evidence for its reasonable application.


Assuntos
Cromo , Poluentes Ambientais , Método de Monte Carlo , Biomarcadores
11.
Sci Total Environ ; 818: 151741, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34808188

RESUMO

Hexavalent chromium [Cr(VI)] and its compounds have been associated with various respiratory diseases, while few studies have attempted to determine its adverse effect on lung function. To explore the potential early indicators of health surveillance for respiratory diseases induced by chromate exposure, a longitudinal cohort study including 515 workers with 918 measurements across 2010-2017 was conducted to investigate the impact of individual internal exposure on lung function. Inductively coupled plasma mass spectrometry (ICP-MS) and spirometry were used to measure whole blood chromium (blood Cr) and lung function respectively. In the linear mixed-effects analysis, each 1- unit increase in Ln- transformed blood Cr was significantly associated with estimated effect percentage decreases of 1.80 (0.35, 3.15) % in FEV1, 0.77 (0.10, 1.43) % in FEV1/FVC, 2.78 (0.55, 4.98) % in PEF, and 2.73 (0.59, 4.71) % in FEF25-75% after adjusting for related covariates. Exposure- response curve depicted the reduction of lung function with blood Cr increase, and the reference value of blood Cr was proposed as 6 µg/L considering the lung function as health outcome. Based on the repeated-measure analysis, compared with the low frequency group, subjects with high frequency of high exposure across 2010-2017 had an additional reduction of 5.65 (0, 11.3) % in FVC. Subjects with medium frequency showed more obvious declines of 9.48 (4.16, 14.87) % in FVC, 8.63 (3.49, 13.97) % in FEV1, 12.94 (3.34, 22.53) % in PEF and 10.97 (3.63, 18.30) % in MVV. These findings suggested that short- term high exposure to Cr associated with obstructive ventilatory impairment, and long- term exposure further led to restrictive ventilatory impairment.


Assuntos
Cromatos , Cromo , Cromatos/farmacologia , Cromo/química , Humanos , Estudos Longitudinais , Pulmão , Testes de Função Respiratória
12.
J Hazard Mater ; 425: 127769, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-34799157

RESUMO

Both genetic damage and inappropriate immune function are relevant to cancer of hexavalent chromium [Cr(VI)]. However, its associations with immune response and genetic damage development are poorly understood. To explore their associations and mediating effects, 1249 participants were included from the Occupational Chromate Exposure Dynamic Cohort, and their blood Cr concentrations were measured as internal exposure. A set of biomarkers including urinary 8-hydroxy-2' - deoxyguanosine (8-OHdG), micronucleus frequency (MNF) and mitochondrial DNA copy number (mtCN) was developed to evaluate the landscape of genetic damage of Cr(VI). Serum C-reactive protein (CRP) and first component of complement q (C1q) were measured to reflect immune inflammation. Multivariate linear regression and mediation analyses were applied to assess the potential associations and mediation effects. It was found that blood Cr level showed significant dose-dependent relationships with increasing of MNF and urinary 8-OHdG, while negative association with CRP and C1q. Furthermore, a 1-unit increase in CRP was associated with decreases of - 0.765 to - 0.254 in MNF, - 0.400 to - 0.051 in urinary 8-OHdG. 4.97% of the association between blood Cr level and the increased MNF was mediated by CRP. 11.58% of the relationship between concentration of blood Cr and urinary 8-OHdG was mediated by C1q. These findings suggested that Cr(VI) exposures might prompt genetic damage, possibly partial via worsening immune inflammation.


Assuntos
Cromatos , Exposição Ocupacional , 8-Hidroxi-2'-Desoxiguanosina , Cromatos/toxicidade , Cromo/toxicidade , Dano ao DNA , Humanos , Inflamação/genética , Exposição Ocupacional/análise , Exposição Ocupacional/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA