Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7226, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538685

RESUMO

Malalignment in the lower limb structure occurs due to various causes. Accurately evaluating limb alignment in situations where malalignment needs correction is necessary. To create an automated support system to evaluate lower limb alignment by quantifying mechanical tibiofemoral angle (mTFA), mechanical lateral distal femoral angle (mLDFA), medial proximal tibial angle (MPTA), and joint line convergence angle (JLCA) on full-length weight-bearing radiographs of both lower extremities. In this retrospective study, we analysed 404 radiographs from one hospital for algorithm development and testing and 30 radiographs from another hospital for external validation. The performance of segmentation algorithm was compared to that of manual segmentation using the dice similarity coefficient (DSC). The agreement of alignment parameters was assessed using the intraclass correlation coefficient (ICC) for internal and external validation. The time taken to load the data and measure the four alignment parameters was recorded. The segmentation algorithm demonstrated excellent agreement with human-annotated segmentation for all anatomical regions (average similarity: 89-97%). Internal validation yielded good to very good agreement for all the alignment parameters (ICC ranges: 0.7213-0.9865). Interobserver correlations between manual and automatic measurements in external validation were good to very good (ICC scores: 0.7126-0.9695). The computer-aided measurement was 3.44 times faster than was the manual measurement. Our deep learning-based automated measurement algorithm accurately quantified lower limb alignment from radiographs and was faster than manual measurement.


Assuntos
Aprendizado Profundo , Osteoartrite do Joelho , Humanos , Perna (Membro) , Estudos Retrospectivos , Articulação do Joelho/diagnóstico por imagem , Tíbia , Osteoartrite do Joelho/etiologia
2.
Med Image Anal ; 73: 102198, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34403931

RESUMO

Obtaining multiple series of magnetic resonance (MR) images with different contrasts is useful for accurate diagnosis of human spinal conditions. However, this can be time consuming and a burden on both the patient and the hospital. We propose a Bloch equation-based autoencoder regularization generative adversarial network (BlochGAN) to generate a fat saturation T2-weighted (T2 FS) image from T1-weighted (T1-w) and T2-weighted (T2-w) images of human spine. To achieve this, our approach was to utilize the relationship between the contrasts using Bloch equation since it is a fundamental principle of MR physics and serves as a physical basis of each contrasts. BlochGAN properly generated the target-contrast images using the autoencoder regularization based on the Bloch equation to identify the physical basis of the contrasts. BlochGAN consists of four sub-networks: an encoder, a decoder, a generator, and a discriminator. The encoder extracts features from the multi-contrast input images, and the generator creates target T2 FS images using the features extracted from the encoder. The discriminator assists network learning by providing adversarial loss, and the decoder reconstructs the input multi-contrast images and regularizes the learning process by providing reconstruction loss. The discriminator and the decoder are only used in the training process. Our results demonstrate that BlochGAN achieved quantitatively and qualitatively superior performance compared to conventional medical image synthesis methods in generating spine T2 FS images from T1-w, and T2-w images.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA