Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.546
Filtrar
1.
Sci Rep ; 14(1): 12971, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839854

RESUMO

Thyroid surgery often results in ischemia-reperfusion injury (IRI) to the parathyroid glands, yet the mechanisms underlying this and how to ameliorate IRI remain incompletely explored. Our study identifies a polyphenolic herbal extract-gallic acid (GA)-with antioxidative properties against IRI. Through flow cytometry and CCK8 assays, we investigate the protective effects of GA pretreatment on a parathyroid IRI model and decode its potential mechanisms via RNA-seq and bioinformatics analysis. Results reveal increased apoptosis, pronounced G1 phase arrest, and significantly reduced cell proliferation in the hypoxia/reoxygenation group compared to the hypoxia group, which GA pretreatment mitigates. RNA-seq and bioinformatics analysis indicate GA's modulation of various signaling pathways, including IL-17, AMPK, MAPK, transient receptor potential channels, cAMP, and Rap1. In summary, GA pretreatment demonstrates potential in protecting parathyroid cells from IRI by influencing various genes and signaling pathways. These findings offer a promising therapeutic strategy for hypoparathyroidism treatment.


Assuntos
Apoptose , Ácido Gálico , Glândulas Paratireoides , Traumatismo por Reperfusão , Transdução de Sinais , Transdução de Sinais/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/patologia , Ácido Gálico/farmacologia , Ácido Gálico/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Glândulas Paratireoides/metabolismo , Glândulas Paratireoides/efeitos dos fármacos , Glândulas Paratireoides/patologia , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos
2.
Liver Int ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700381

RESUMO

BACKGROUND AND AIMS: Hepatitis B virus (HBV) vaccination programs in Taiwan are one of the earliest programs in the world and have largely reduced the prevalence of HBV infection. We aimed to demonstrate the vaccination efficacy after 35 years and identify gaps toward HBV elimination. METHODS: A total of 4717 individuals aged 1-60 years were recruited from four administrative regions based on the proportion of population distribution. Serum levels of hepatitis B surface antigen (HBsAg), hepatitis B surface antibody (anti-HBs), and hepatitis B core antibody (anti-HBc) levels were assessed. HBV viral load, genotypes and HBsAg 'ɑ' determinant variants were evaluated if indicated. RESULTS: After 35 years of vaccination, the overall seropositivity rates for HBsAg and anti-HBc in Taiwan were 4.05% and 21.3%, respectively. The vaccinated birth cohorts exhibited significantly lower seropositivity rates for both markers compared to the unvaccinated birth cohorts (HBsAg: 0.64% vs. 9.78%; anti-HBc: 2.1% vs. 53.55%, respectively; p < 0.0001). Maternal transmission was identified as the main route of HBV infection in breakthrough cases. Additionally, increased prevalences of genotype C and HBsAg escape mutants were observed. CONCLUSION: The 35-year universal HBV vaccination program effectively reduced the burden of HBV infection, but complete eradication of HBV infection has not yet been achieved. In addition to immunization, comprehensive screening and antiviral therapy for infected individuals, especially for pregnant women, are crucial strategies to eliminate HBV.

3.
Small ; : e2401308, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773889

RESUMO

Incorporating ultralow loading of nanoparticles into polymers has realized increases in dielectric constant and breakdown strength for excellent energy storage. However, there are still a series of tough issues to be dealt with, such as organic solvent uses, which face enormous challenges in scalable preparation. Here, a new strategy of dual in situ synthesis is proposed, namely polymerization of polyethylene terephthalate (PET) synchronizes with growth of calcium borate nanoparticles, making polyester nanocomposites from monomers directly. Importantly, this route is free of organic solvents and surface modification of nanoparticles, which is readily accessible to scalable synthesis of polyester nanocomposites. Meanwhile, uniform dispersion of as ultralow as 0.1 wt% nanoparticles and intense bonding at interfaces have been observed. Furthermore, the PET-based nanocomposite displays obvious increases in both dielectric constant and breakdown strength as compared to the neat PET. Its maximum discharged energy density reaches 15 J cm-3 at 690 MV m-1 and power density attains 218 MW cm-3 under 150 Ω resistance at 300 MV m-1, which is far superior to the current dielectric polymers that can be produced at large scales. This work presents a scalable, safe, low-cost, and environment-friendly route toward polymer nanocomposites with superior capacitive performance.

4.
Chin J Integr Med ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38816635

RESUMO

OBJECTIVE: To explore the effect of bear bile powder (BBP) on acute lung injury (ALI) and the underlying mechanism. METHODS: The chemical constituents of BBP were analyzed by ultra-high-pressure liquid chromatography-mass spectrometry (UPLC-MS). After 7 days of adaptive feeding, 50 mice were randomly divided into 5 groups by a random number table (n=10): normal control (NC), lipopolysaccharide (LPS), dexamethasone (Dex), low-, and high-dose BBP groups. The dosing cycle was 9 days. On the 12th and 14th days, 20 µL of Staphylococcus aureus solution (bacterial concentration of 1 × 10-7 CFU/mL) was given by nasal drip after 1 h of intragastric administration, and the mice in the NC group was given the same dose of phosphated buffered saline (PBS) solution. On the 16th day, after 1 h intragastric administration, 100 µL of LPS solution (1 mg/mL) was given by tracheal intubation, and the same dose of PBS solution was given to the NC group. Lung tissue was obtained to measure the myeloperoxidase (MPO) activity, the lung wet/dry weight ratio and expressions of CD14 and other related proteins. The lower lobe of the right lung was obtained for pathological examination. The concentrations of inflammatory cytokines including interleukin (IL)-6, tumour necrosis factor α (TNF-α ) and IL-1ß in the bronchoalveolar lavage fluid (BALF) were detected by enzyme linked immunosorbent assay, and the number of neutrophils was counted. The colonic contents of the mice were analyzed by 16 sRNA technique and the contents of short-chain fatty acids (SCFAs) were measured by gas chromatograph-mass spectrometer (GC-MS). RESULTS: UPLC-MS revealed that the chemical components of BBP samples were mainly tauroursodeoxycholic acid and taurochenodeoxycholic acid sodium salt. BBP reduced the activity of MPO, concentrations of inflammatory cytokines, and inhibited the expression of CD14 protein, thus suppressing the activation of NF-κB pathway (P<0.05). The lung histopathological results indicated that BBP significantly reduced the degree of neutrophil infiltration, cell shedding, necrosis, and alveolar cavity depression. Moreover, BBP effectively regulated the composition of the intestinal microflora and increased the production of SCFAs, which contributed to its treatment effect (P<0.05). CONCLUSIONS: BBP alleviates lung injury in ALI mouse through inhibiting activation of NF-κB pathway and decreasing expression of CD14 protein. BBP may promote recovery of ALI by improving the structure of intestinal flora and enhancing metabolic function of intestinal flora.

5.
Anal Chem ; 96(19): 7780-7786, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38695093

RESUMO

Development of highly efficient, heavy-metal-free electrochemiluminescence (ECL) materials is attractive but still challenging. Herein, we report an aggregation-induced delayed ECL (AIDECL) active organic dot (OD) composed of a tert-butoxy-group-substituted benzophenone-dimethylacridine compound, which shows high ECL efficiency. The resultant ODs exhibit 2.1-fold higher ECL efficiency compared to control AIDECL-active ODs. Molecular stacking combined with theoretical calculations suggests that tert-butoxy groups effectively participate in the intermolecular interactions, further inhibiting the molecular motions in the aggregated states and thus accelerating radiative decay. On the basis of these ODs exhibiting excellent ECL performance, a proof-of-concept biosensor is constructed for the detection of miR-16 associated with Alzheimer's disease, which demonstrates excellent detection ability with the limit of detection of 1.7 fM. This work provides a new approach to improve the ECL efficiency and enriches the fundamental understanding of the structure-property relationship.

6.
J Phys Chem Lett ; 15(21): 5594-5599, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38755539

RESUMO

In recent years, silver nanoparticles (Ag NPs) have been used as positive electrode material for zinc/silver batteries, and the silver oxides formed during the charging process determine the discharge performance of batteries. Therefore, it is important to study the oxidation behavior of Ag NPs in alkaline solution. Single-nanoparticle collision is an important tool for analyzing oxidation behavior of individual nanoparticles. Based on thermodynamic information from collision events, it is known that oxidation products are potential-dependent and size-dependent. Based on dynamic information, including collisional peak shapes and duration time, it was observed that the Ag NP collision oxidation process changed from stepwise oxidation to direct oxidation as the potential increased or size decreased. This work provides guidance for application of Ag NPs in zinc/silver batteries and proposed a strategy for oxidation behavior of individual NP that could be tracked in situ through an all-encompassing view of thermodynamic and dynamic information.

7.
J Med Chem ; 67(10): 7836-7858, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38695063

RESUMO

The approval of venetoclax, a B-cell lymphoma-2 (Bcl-2) selective inhibitor, for the treatment of chronic lymphocytic leukemia demonstrated that the antiapoptotic protein Bcl-2 is a druggable target for B-cell malignancies. However, venetoclax's limited potency cannot produce a strong, durable clinical benefit in other Bcl-2-mediated malignancies (e.g., diffuse large B-cell lymphomas) and multiple recurrent Bcl-2 mutations (e.g., G101V) have been reported to mediate resistance to venetoclax after long-term treatment. Herein, we described novel Bcl-2 inhibitors with increased potency for both wild-type (WT) and mutant Bcl-2. Comprehensive structure optimization led to the clinical candidate BGB-11417 (compound 12e, sonrotoclax), which exhibits strong in vitro and in vivo inhibitory activity against both WT Bcl-2 and the G101V mutant, as well as excellent selectivity over Bcl-xL without obvious cytochrome P450 inhibition. Currently, BGB-11417 is undergoing phase II/III clinical assessments as monotherapy and combination treatment.


Assuntos
Antineoplásicos , Mutação , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Humanos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Camundongos , Linhagem Celular Tumoral , Sulfonamidas/farmacologia , Sulfonamidas/química , Ratos , Descoberta de Drogas
8.
ACS Appl Mater Interfaces ; 16(21): 27523-27531, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38745497

RESUMO

The pursuit of high-performance electronic devices has driven the research focus toward 2D semiconductors with high electron mobility and suitable band gaps. Previous studies have demonstrated that quasi-2D Bi2O2Se (BOSe) has remarkable physical properties and is a promising candidate for further exploration. Building upon this foundation, the present work introduces a novel concept for achieving nonvolatile and reversible control of BOSe's electronic properties. The approach involves the epitaxial integration of a ferroelectric PbZr0.2Ti0.8O3 (PZT) layer to modify BOSe's band alignment. Within the BOSe/PZT heteroepitaxy, through two opposite ferroelectric polarization states of the PZT layer, we can tune the Fermi level in the BOSe layer. Consequently, this controlled modulation of the electronic structure provides a pathway to manipulate the electrical properties of the BOSe layer and the corresponding devices.

9.
Proc Natl Acad Sci U S A ; 121(22): e2316176121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38771878

RESUMO

The striato-nigral (Str-SN) circuit is composed of medium spiny neuronal projections that are mainly sent from the striatum to the midbrain substantial nigra (SN), which is essential for regulating motor behaviors. Dysfunction of the Str-SN circuitry may cause a series of motor disabilities that are associated with neurodegenerative disorders, such as Huntington's disease (HD). Although the etiology of HD is known as abnormally expanded CAG repeats of the huntingtin gene, treatment of HD remains tremendously challenging. One possible reason is the lack of effective HD model that resembles Str-SN circuitry deficits for pharmacological studies. Here, we first differentiated striatum-like organoids from human pluripotent stem cells (hPSCs), containing functional medium spiny neurons (MSNs). We then generated 3D Str-SN assembloids by assembling striatum-like organoids with midbrain SN-like organoids. With AAV-hSYN-GFP-mediated viral tracing, extensive MSN projections from the striatum to the SN are established, which formed synaptic connection with GABAergic neurons in SN organoids and showed the optically evoked inhibitory postsynaptic currents and electronic field potentials by labeling the striatum-like organoids with optogenetic virus. Furthermore, these Str-SN assembloids exhibited enhanced calcium activity compared to that of individual striatal organoids. Importantly, we further demonstrated the reciprocal projection defects in HD iPSC-derived assembloids, which could be ameliorated by treatment of brain-derived neurotrophic factor. Taken together, these findings suggest that Str-SN assembloids could be used for identifying MSN projection defects and could be applied as potential drug test platforms for HD.


Assuntos
Doença de Huntington , Organoides , Humanos , Doença de Huntington/patologia , Doença de Huntington/metabolismo , Organoides/patologia , Organoides/metabolismo , Substância Negra/patologia , Substância Negra/metabolismo , Corpo Estriado/patologia , Corpo Estriado/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Diferenciação Celular , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/patologia , Células-Tronco Pluripotentes/metabolismo , Optogenética
10.
Adv Sci (Weinh) ; : e2402287, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711218

RESUMO

Human stem cells and derivatives transplantation are widely used to treat nervous system diseases, while the fate determination of transplanted cells is not well elucidated. To explore cell fate changes of human brain organoids before and after transplantation, human brain organoids are transplanted into prefrontal cortex (PFC) and hippocampus (HIP), respectively. Single-cell sequencing is then performed. According to time-series sample comparison, transplanted cells mainly undergo neural development at 2 months post-transplantation (MPT) and then glial development at 4MPT, respectively. A different brain region sample comparison shows that organoids grafted to PFC have obtained cell fate close to those of host cells in PFC, other than HIP, which may be regulated by the abundant expression of dopamine (DA) and acetylcholine (Ach) in PFC. Meanwhile, morphological complexity of human astrocyte grafts is greater in PFC than in HIP. DA and Ach both activate the calcium activity and increase morphological complexity of astrocytes in vitro. This study demonstrates that human brain organoids receive host niche factor regulation after transplantation, resulting in the alignment of grafted cell fate with implanted brain regions, which may contribute to a better understanding of cell transplantation and regenerative medicine.

11.
Nat Commun ; 15(1): 4473, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796488

RESUMO

Assessing failure pressure is critical in determining pipeline integrity. Current research primarily concerns the buckling performance of pressurized pipelines subjected to a bending load or axial compression force, with some also looking at the failure pressure of corroded pipelines. However, there is currently a lack of limit state models for pressurized pipelines with bending moments and axial forces. In this study, based on the unified yield criterion, we propose a limit state equation for steel pipes under various loads. The most common operating loads on buried pipelines are bending moment, internal pressure, and axial force. The proposed limit state equation for intact pipelines is based on a three-dimensional pipeline stress model with complex load coupling. Using failure data, we investigate the applicability of various yield criteria in assessing the failure pressure of pipelines with complex loads. We show that the evaluation model can be effectively used as a theoretical solution for assessing the failure pressure in such circumstances and for selecting appropriate yield criteria based on load condition differences.

12.
BMC Med Imaging ; 24(1): 80, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584254

RESUMO

OBJECTIVE: To exploit the improved prediction performance based on dynamic contrast-enhanced (DCE) MRI by using dynamic radiomics for microvascular invasion (MVI) in hepatocellular carcinoma (HCC). METHODS: We retrospectively included 175 and 75 HCC patients who underwent preoperative DCE-MRI from September 2019 to August 2022 in institution 1 (development cohort) and institution 2 (validation cohort), respectively. Static radiomics features were extracted from the mask, arterial, portal venous, and equilibrium phase images and used to construct dynamic features. The static, dynamic, and dynamic-static radiomics (SR, DR, and DSR) signatures were separately constructed based on the feature selection method of LASSO and classification algorithm of logistic regression. The receiver operating characteristic (ROC) curves and the area under the curve (AUC) were plotted to evaluate and compare the predictive performance of each signature. RESULTS: In the three radiomics signatures, the DSR signature performed the best. The AUCs of the SR, DR, and DSR signatures in the training set were 0.750, 0.751 and 0.805, respectively, while in the external validation set, the corresponding AUCs were 0.706, 0756 and 0.777. The DSR signature showed significant improvement over the SR signature in predicting MVI status (training cohort: P = 0.019; validation cohort: P = 0.044). After external validation, the AUC value of the SR signature decreased from 0.750 to 0.706, while the AUC value of the DR signature did not show a decline (AUCs: 0.756 vs. 0.751). CONCLUSIONS: The dynamic radiomics had an improved effect on the MVI prediction in HCC, compared with the static DCE MRI-based radiomics models.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Estudos Retrospectivos , Radiômica , Valor Preditivo dos Testes , Imageamento por Ressonância Magnética/métodos
13.
JHEP Rep ; 6(5): 101061, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38601477

RESUMO

Background & Aim: Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) attenuates cytotoxic T lymphocyte (CTL) activation. This study was performed to examine the relationships between CTLA-4 genotypes/haplotypes, hepatitis B surface antigen (HBsAg), and hepatitis B core-related antigen (HBcrAg) levels, and their potential impact on the clinical course of chronic HBV infection. Methods: We recruited 145 treatment-naïve patients with genotype B or C chronic HBV infection who were initially hepatitis B e-antigen (HBeAg)-positive and had been followed from a mean age of 7.08 years for a total of 4,787 person-years in the study cohort. We also recruited another 69 treatment-naïve adults with genotype B or C chronic HBV infection as a validation cohort. We assessed the CTLA-4 gene single nucleotide polymorphisms rs4553808 (-A1661G)/rs5742909 (-C318T) in both cohorts, and the serum HBsAg and HBcrAg levels in the study cohort. Results: CTLA-4 promoter haplotypes were associated with HBsAg and HBcrAg levels at 10 and 15 years of age in the study cohort. Patients with the CTLA-4 AA/CC haplotype showed earlier spontaneous HBeAg seroconversion (hazard ratio = 1.58; p = 0.02), and a more rapid annual decline in the serum HBsAg level than other patients (0.09 vs. 0.03 log10 IU/ml/year, p = 0.02). The CTLA-4 AA/CC haplotype was also predictive of HBeAg seroconversion in the validation cohort (p = 0.01). Conclusions: Chronic HBV-infected patients with a CTLA-4 AA/CC haplotype had lower serum HBsAg and HBcrAg levels in childhood and earlier spontaneous HBeAg seroconversion. Impact and implications: The role of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) in chronic HBV-infected children has not been studied previously. In a very long-term cohort followed from childhood to adulthood, we showed that CTLA-4 haplotypes are associated with HBV biomarker levels in childhood and are correlated with the clinical course of chronic HBV infection. CTLA-4 pathway may serve as a future target for the development of therapeutic agents against HBV infection.

14.
Adv Mater ; : e2402170, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587064

RESUMO

The rapid advancement of prevailing communication/sensing technologies necessitates cost-effective millimeter-wave arrays equipped with a massive number of phase-shifting cells to perform complicated beamforming tasks. Conventional approaches employing semiconductor switch/varactor components or tunable materials encounter obstacles such as quantization loss, high cost, high complexity, and limited adaptability for realizing large-scale arrays. Here, a low-cost, ultrathin, fast-response, and large-scale solution relying on metasurface concepts combined together with liquid crystal (LC) materials requiring a layer thickness of only 5 µm is reported. Rather than immersing resonant structures in LCs, a joint material-circuit-based strategy is devised, via integrating deep-subwavelength-thick LCs into slow-wave structures, to achieve constitutive metacells with continuous phase shifting and stable reflectivity. An LC-facilitated reconfigurable metasurface sub-system containing more than 2300 metacells is realized with its unprecedented comprehensive wavefront manipulation capacity validated through various beamforming functions, including beam focusing/steering, reconfigurable vortex beams, and tunable holograms, demonstrating a milli-second-level function-switching speed. The proposed methodology offers a paradigm shift for modulating electromagnetic waves in a non-resonating broadband fashion with fast-response and low-cost properties by exploiting functionalized LC-enabled metasurfaces. Moreover, this extremely agile metasurface-enabled antenna technology will facilitate a transformative impact on communication/sensing systems and empower new possibilities for wavefront engineering and diffractive wave calculation/inference.

15.
Nano Lett ; 24(15): 4665-4671, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38587938

RESUMO

Effective bimetallic nanoelectrocatalysis demands precise control of composition, structure, and understanding catalytic mechanisms. To address these challenges, we employ a two-in-one approach, integrating online synthesis with real-time imaging of bimetallic Au@Metal core-shell nanoparticles (Au@M NPs) via electrochemiluminescence microscopy (ECLM). Within 120 s, online electrodeposition and in situ catalytic activity screening alternate. ECLM captures transient faradaic processes during potential switches, visualizes electrochemical processes in real-time, and tracks catalytic activity dynamics at the single-particle level. Analysis using ECL photon flux density eliminates size effects and yields quantitative electrocatalytic activity results. Notably, a nonlinear activity trend corresponding to the shell metal to Au surface atomic ratio is discerned, quantifying the optimal surface component ratio of Au@M NPs. This approach offers a comprehensive understanding of catalytic behavior during the deposition process with high spatiotemporal resolution, which is crucial for tailoring efficient bimetallic nanocatalysts for diverse applications.

16.
World J Clin Cases ; 12(12): 2065-2073, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38680258

RESUMO

BACKGROUND: Human immunodeficiency virus (HIV)-associated dementia (HAD) is a subcortical form of dementia characterized by memory deficits and psychomotor slowing. However, HAD often presents with symptoms similar to those of Creutzfeldt-Jakob disease (CJD), particularly in patients with acquired immune deficiency syndrome (AIDS). CASE SUMMARY: We report the case of a 54-year-old male who exhibited cognitive dysfunction and secondary behavioral changes following HIV infection and suspected prion exposure. The patient was diagnosed with HIV during hospitalization and his cerebrospinal fluid tested positive for 14-3-3 proteins. His electroencephalogram showed a borderline-abnormal periodic triphasic wave pattern. Contrast-enhanced magnetic resonance imaging revealed moderate encephalatrophy and demyelination. Initially, symptomatic treatment and administration of amantadine were pursued for presumed CJD, but the patient's condition continued to deteriorate. By contrast, the patient's condition improved following anti-HIV therapy. This individual is also the only patient with this prognosis to have survived over 4 years. Thus, the diagnosis was revised to HAD. CONCLUSION: In the diagnostic process of rapidly progressive dementia, it is crucial to rule out as many potential causes as possible and to consider an autopsy to diminish diagnostic uncertainty. The 14-3-3 protein should not be regarded as the definitive marker for CJD. Comprehensive laboratory screening for infectious diseases is essential to enhance diagnostic precision, especially in AIDS patients with potential CJD. Ultimately, a trial of diagnostic treatment may be considered when additional testing is not feasible.

17.
Anal Chem ; 96(18): 7172-7178, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38650072

RESUMO

Achieving sensitive detection and accurate identification of cancer cells is vital for diagnosing and treating the disease. Here, we developed a logic signal amplification system using DNA tetrahedron-mediated three-dimensional (3D) DNA nanonetworks for sensitive electrochemiluminescence (ECL) detection and subtype identification of cancer cells. Specially designed hairpins were integrated into DNA tetrahedral nanostructures (DTNs) to perform a catalytic hairpin assembly (CHA) reaction in the presence of target microRNA, forming hyperbranched 3D nanonetworks. Benefiting from the "spatial confinement effect," the DNA tetrahedron-mediated catalytic hairpin assembly (DTCHA) reaction displayed significantly faster kinetics and greater cycle conversion efficiency than traditional CHA. The resulting 3D nanonetworks could load a large amount of Ru(phen)32+, significantly enhancing its ECL signal, and exhibit detection limits for both miR-21 and miR-141 at the femtomolar level. The biosensor based on modular logic gates facilitated the distinction and quantification of cancer cells and normal cells based on miR-21 levels, combined with miR-141 levels, to further identify different subtypes of breast cancer cells. Overall, this study provides potential applications in miRNA-related clinical diagnostics.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Medições Luminescentes , MicroRNAs , Humanos , MicroRNAs/análise , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , DNA/química , Nanoestruturas/química , Limite de Detecção , Linhagem Celular Tumoral , Neoplasias da Mama/diagnóstico , Células MCF-7
18.
bioRxiv ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38659803

RESUMO

We present an open-source behavioral platform and software solution for studying fine motor skills in mice performing reach-to-grasp task. The behavioral platform uses readily available and 3D-printed components and was designed to be affordable and universally reproducible. The protocol describes how to assemble the box, train mice to perform the task and process the video with the custom software pipeline to analyze forepaw kinematics. All the schematics, 3D models, code and assembly instructions are provided in the open GitHub repository.

19.
Asian J Surg ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38641534
20.
Anal Chem ; 96(18): 7030-7037, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38656919

RESUMO

Intracellular cancer-related biomarker imaging strategy has been used for specific identification of cancer cells, which was of great importance to accurate cancer clinical diagnosis and prognosis studies. Localized DNA circuits with improved sensitivity showed great potential for intracellular biomarkers imaging. However, the ability of localized DNA circuits to specifically image cancer cells is limited by off-site signal leakage associated with a single-biomarker sensing strategy. Herein, we integrated the endogenous enzyme-powered strategy with logic-responsive and localized signal amplifying capability to construct a self-assembled endogenously AND logic DNA nanomachine (EDN) for highly specific cancer cell imaging. When the EDN encountered a cancer cell, the overexpressed DNA repairing enzyme apurinic/apyrimidinic endonuclease 1 (APE1) and miR-21 could synergistically activate a DNA circuit via cascaded localized toehold-mediated strand displacement (TMSD) reactions, resulting in amplified fluorescence resonance energy transfer (FRET) signal. In this strategy, both endogenous APE1 and miR-21, served as two "keys" to activate the AND logic operation in cancer cells to reduce off-tumor signal leakage. Such a multiplied molecular recognition/activation nanomachine as a powerful toolbox realized specific capture and reliable imaging of biomolecules in living cancer cells.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , DNA , Transferência Ressonante de Energia de Fluorescência , MicroRNAs , Humanos , MicroRNAs/análise , MicroRNAs/metabolismo , DNA/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Neoplasias/diagnóstico por imagem , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA