Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Microbiol Spectr ; : e0050924, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809017

RESUMO

Bacterial genotyping through whole-genome sequencing plays a crucial role in disease surveillance and outbreak investigations in public health laboratories. This study assessed the effectiveness of Oxford Nanopore Technologies (ONT) sequencing in the genotyping of Listeria monocytogenes and Salmonella enterica serovar Enteritidis. Our results indicated that ONT sequences, generated with the R10.4.1 flow cell and basecalled using the Dorado 0.5.0 Super Accurate 4.3 model, exhibited comparable accuracy to Illumina sequences, effectively discriminating among bacterial strains from outbreaks. These findings suggest that ONT sequencing has the potential to be a promising tool for rapid whole-genome sequencing of bacterial pathogens in public health laboratories for epidemiological investigations. IMPORTANCE: This study unveils that Oxford Nanopore Technologies sequencing, by itself, holds the potential to serve as a whole-genome sequencing-based genotyping tool in public health laboratories, enabling routine subtyping of bacterial isolates for disease surveillance and outbreak investigations.

2.
IJID Reg ; 11: 100372, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38799797

RESUMO

Objectives: Salmonella, a zoonotic pathogen, significantly impacts global human health. Understanding its serotype distribution and antimicrobial resistance is crucial for effective control measures and medical interventions. Methods: We collected Salmonella isolates and demographic data from Taiwanese hospitals between 2004 and 2022, analyzing their serotypes and antimicrobial susceptibility. Results: Among 40,595 isolates, salmonellosis predominated in children aged 0-4 (61.2%) years and among males (55.2%). Males also showed higher rates of extraintestinal infections (18.1% vs 16.0%, P <0.001), particularly, in the ≥65 years age group (52.4%). The top five serovars were S. Enteritidis (32.8%), S. Typhimurium (21.7%), S. Newport (6.2%), S. Stanley (4.7%), and S. Anatum (4.0%). Notably, S. Enteritidis prevalence increased from 23.9% (2004-2005) to 43.6% (2021-2022). Antimicrobial resistance was high, with a 51.6% multidrug resistance (MDR) rate. Disturbingly, MDR rates exceeded 90% in serovars Albany, Schwarzengrund, Choleraesuis, and Goldcoast. Resistance to key therapeutic agents, azithromycin, cefotaxime, and ciprofloxacin, exhibited concerning upward trends, and the surge in cefotaxime and ciprofloxacin resistance was closely linked to the emergence and spread of MDR S. Anatum and S. Goldcoast clones. Conclusions: Prioritizing control measures against S. Enteritidis and closely monitoring the prevalence and spread of MDR clones are imperative to mitigate Salmonella infections in Taiwan.

3.
Small ; 20(11): e2306769, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37932007

RESUMO

Fresh sweat contains a diverse range of physiological indicators that can effectively reflect changes in the body. However, existing wearable sweat detection systems face challenges in efficiently collecting and detecting fresh sweat in real-time. Additionally, they often lack the necessary deformation capabilities, resulting in discomfort for the wearer. Here, a fully elastic wearable electrochemical sweat detection system is developed that integrates a sweat-collecting microfluidic chip, a multi-parameter electrochemical sensor, a micro-heater, and a sweat detection elastic circuit board system. The unique tree-bionic structure of the microfluidic chip significantly enhances the efficiency of fresh sweat collection and discharge, enabling real-time detection by the electrochemical sensors. The sweat multi-parameter electrochemical sensor offers high-precision and high-sensitivity measurements of sodium ions, potassium ions, lactate, and glucose. The electronic system is built on an elastic circuit board that matches perfectly to wrinkled skin, ensuring improved wearing comfort and enabling multi-channel data sampling, processing, and wireless transmission. This state-of-the-art system represents a significant advancement in the field of elastic wearable sweat detection and holds promising potential for extending its capabilities to the detection of other sweat markers or various wearable applications.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Suor/química , Microfluídica , Árvores , Biônica , Íons/análise , Técnicas Biossensoriais/métodos
4.
Microbiol Spectr ; 11(6): e0292223, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37787563

RESUMO

IMPORTANCE: Carbapenem resistance arising from the loss of porins is commonly observed in extended-spectrum ß-lactamase (ESBL) and AmpC ß-lactamase-producing strains of certain Enterobacteriaceae genera, including Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa. However, this resistance mechanism is rarely reported in the Salmonella genus. To address this knowledge gap, our study offers genetic evidence demonstrating that the loss of two specific porins (OmpC_378 and OmpD) is crucial for the development of carbapenem resistance in Salmonella ESBL and AmpC ß-lactamase-producing strains. Furthermore, our findings reveal that most Salmonella serovars carry seven porin parathologs, with OmpC_378 and OmpD being the key porins involved in the development of carbapenem resistance in Salmonella strains.


Assuntos
Antibacterianos , Salmonella enterica , Antibacterianos/farmacologia , Sorogrupo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Proteínas de Bactérias/genética , Salmonella , Escherichia coli/genética , Carbapenêmicos/farmacologia , Salmonella enterica/genética , Salmonella enterica/metabolismo , Porinas/genética , Testes de Sensibilidade Microbiana
5.
J Glob Antimicrob Resist ; 35: 128-136, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37709137

RESUMO

OBJECTIVES: We investigated the temporal trends of Salmonella enterica serovar Typhimurium (S. Typhimurium) clones in Taiwan from 2004 to 2019, focusing on antimicrobial resistance (AMR), resistance genetic determinants, and plasmid types. METHODS: Salmonella isolates were characterized using pulsed-field gel electrophoresis (PFGE), whole-genome sequencing, and antimicrobial susceptibility testing. Clones were defined using PFGE clustering and the hierarchical cgMLST clustering (HierCC) assignments. RESULTS: Seven major S. Typhimurium clones, HC100_2, 13, 41, 305, 310, 501, and 46261, accounted for 97.6% (8079/8275) of human isolates in Taiwan. Each clone displayed a unique AMR profile, resistance genetic determinants, and plasmid types. Four highly resistant clones (HC100_2, 41, 305, and 310) exhibited multiple resistance in 86.5% to 96.1% of isolates. HC100_305 and HC100_2 were pandemic multidrug-resistant clones, characterized by resistance to ampicillin, chloramphenicol, streptomycin, sulfonamides, and tetracycline (ACSSuT) and ASSuT, respectively. The prevalence of the ACSSuT clone decreased from 68.7% of S. Typhimurium isolates in 2004 to 1.7% in 2019, while the ASSuT clone emerged in 2007 and became the largest clone after 2010. Several plasmids, including IncHI2-IncHI2A, IncC, IncFIB(K), and IncI1-1(α), carried multiple resistance genes or were associated with the carriage of mph(A), blaCMY-2, and blaDHA-1. CONCLUSIONS: Between 2004 and 2019, Taiwan experienced the emergence, prevalence, and subsequent decline of several highly resistant S. Typhimurium clones. The clones defined using the HierCC approach have global comparability. The increasing resistance to third-generation cephalosporins, cephamycins, ciprofloxacin, and azithromycin in recent years poses a significant medical concern.


Assuntos
Antibacterianos , Salmonella typhimurium , Humanos , Antibacterianos/farmacologia , Sorogrupo , Taiwan/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana
6.
Emerg Infect Dis ; 29(8): 1634-1637, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37486207

RESUMO

A CTX-M-65‒producing Salmonella enterica serovar Infantis clone, probably originating in Latin America and initially reported in the United States, has emerged in Taiwan. Chicken meat is the most likely primary carrier. Four of the 9 drug resistance genes have integrated into the chromosome: blaCTX-M-65, tet(A), sul1, and aadA1.


Assuntos
Salmonella enterica , beta-Lactamases , Estados Unidos , Animais , Sorogrupo , Taiwan/epidemiologia , beta-Lactamases/genética , Salmonella enterica/genética , Cromossomos , Antibacterianos/farmacologia , Galinhas , Plasmídeos , Farmacorresistência Bacteriana Múltipla/genética
7.
Microbiol Spectr ; 11(1): e0336422, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36688703

RESUMO

Antimicrobial resistance was investigated in 2,341 nontyphoidal Salmonella (NTS) isolates recovered from humans in Taiwan from 2017 to 2018 using antimicrobial susceptibility testing. Azithromycin resistance determinants were detected in 175 selected isolates using PCR and confirmed in 81 selected isolates using whole-genome sequencing. Multidrug resistance was found in 47.3% of total isolates and 96.2% of Salmonella enterica serovar Anatum and 81.7% of S. enterica serovar Typhimurium isolates. Resistance to the conventional first-line drugs (ampicillin, chloramphenicol, and cotrimoxazole), cefotaxime and ceftazidime, and ciprofloxacin was found in 32.5 to 49.0%, 20.3 to 20.4%, and 3.2% of isolates, respectively. A total of 76 (3.1%) isolates were resistant to azithromycin, which was associated with mph(A), erm(42), erm(B), and possibly the enhanced expression of efflux pump(s) due to ramAp or defective ramR. mph(A) was found in 53% of the 76 azithromycin-resistant isolates from 11 serovars and located in an IS26-mph(A)-mrx(A)-mphR(A)-IS6100 unit in various incompatibility plasmids and the chromosomes. erm(42) in S. enterica serovar Albany was carried by an integrative and conjugative element, ICE_erm42, and in S. enterica serovar Enteritidis and S. Typhimurium was located in IS26 composite transposons in the chromosomes. erm(B) was carried by IncI1-I(α) plasmids in S. Enteritidis and S. Typhimurium. ramAp was a plasmid-borne ramA, a regulatory activator of efflux pump(s), found in only S. enterica serovar Goldcoast. Since the azithromycin resistance determinants are primarily carried on mobile genetic elements, they could easily be disseminated among human bacterial pathogens. The ramAp-carrying S. Goldcoast isolates displayed azithromycin MICs of 16 to 32 mg/L. Thus, the epidemiological cutoff value of ≤16 mg/L of azithromycin proposed for wild-type NTS should be reconsidered. IMPORTANCE Antimicrobial resistance in NTS isolates is a major public health concern in Taiwan, and the mechanisms of azithromycin resistance are rarely investigated. Azithromycin and carbapenems are the last resort for the treatment of invasive salmonellosis caused by multidrug-resistant (MDR) and extensively drug-resistant Salmonella strains. Our study reports the epidemiological trend of resistance in NTS in Taiwan and the genetic determinants involved in azithromycin resistance. We point out that nearly half of NTS isolates from 2017 to 2018 are MDR, and 20% are resistant to third-generation cephalosporins. The azithromycin resistance rate (3.1%) for the NTS isolates from Taiwan is much higher than those for the NTS isolates from the United States and Europe. Our study also indicates that azithromycin resistance is primarily mediated by mph(A), erm(42), erm(B), and ramAp, which are frequently carried on mobile genetic elements. Thus, the azithromycin resistance determinants could be expected to be disseminated among diverse bacterial pathogens.


Assuntos
Azitromicina , Salmonella enterica , Humanos , Azitromicina/farmacologia , Antibacterianos/farmacologia , Taiwan , Farmacorresistência Bacteriana Múltipla/genética , Farmacorresistência Bacteriana/genética , Salmonella/genética , Testes de Sensibilidade Microbiana , Salmonella enterica/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-33685895

RESUMO

We identified an erm42-carrying integrative and conjugative element, ICE_erm42, in 26.4% of multidrug-resistant Salmonella enterica serovar Albany isolates recovered from human salmonellosis between 2014 and 2019 in Taiwan. ICE_erm42-carrying strains displayed high-level resistance to azithromycin and the element could move into the phylogenetically distant Vibrio cholerae via conjugation.

9.
Microbiol Spectr ; 10(4): e0088222, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35862973

RESUMO

We present the demographic features of invasive meningococcal disease (IMD) in Taiwan between 1993 and 2020 and the genetic characteristics of Neisseria meningitidis isolates recovered from 2003 to 2020. IMD was rare in Taiwan between 1993 and 2020, with an annual incidence ranging from 0.009 to 0.204 per 100,000 people. The case fatality rate (CFR) declined from 18.1% for patients in 1993 to 2002 to 9.8% in 2003 to 2020. Infants less than 12 months were most susceptible to the disease. N. meningitidis serogroup B (NmB) was most predominant, responsible for 81.2% (134/165) of the IMD cases in 2003 to 2020. The majority of the isolates recovered from 2003 to 2020 belonged to 4 worldwide-spread hyperinvasive clonal complexes (cc), cc4821 (30.3%), cc32 (19.4%), cc41/44 (12.7%), cc23 (7.3%), and also a newly assigned clonal complex, cc3439 (10.3%). Core genome multilocus sequence typing (cgMLST) profile comparisons revealed that the cc4821 isolates with a T-to-I substitution at position 91 in gyrA were closely related to those originating from China. Of the 165 isolates, 20.0% and 53.3% were predicted to be covered by the Bexsero and Trumenba vaccines, respectively, whereas, 77.0% and 46.7% remained indeterminate. In conclusion, N. meningitidis isolates recovered in Taiwan between 2003 and 2020 were mostly highly diverse. Most IMD cases appeared sporadically and were caused by localized strains, although some patients were infected by recently introduced strains. cgMLST is a powerful tool for the rapid comparison of genetic relatedness among a large number of isolates. cgMLST profiling, based on 1,241 core genes, and strain tracking can be performed on the website of cgMLST@Taiwan (http://rdvd.cdc.gov.tw/cgMLST/). IMPORTANCE N. meningitidis can cause life-threatening invasive meningococcal disease (IMD), including meningitis and sepsis, resulting in a high CFR and long-term sequelae in survivors. Here, we report the demographic features of IMD in Taiwan over a 28-year period (1993 to 2020) and the genetic characteristics of N. meningitidis isolates recovered from patients with IMD over an 18-year period (2003 to 2020). We conducted a whole-genome sequence analysis to characterize the genetic features of the isolates and developed a cgMLST scheme for epidemiological investigation and strain tracking. The findings can be beneficial in understanding the epidemiology of IMD in Taiwan, the genetic characteristics of the bacterial strains, and the distribution of vaccine antigens for vaccine development and implementation.


Assuntos
Infecções Meningocócicas , Neisseria meningitidis , Humanos , Incidência , Lactente , Infecções Meningocócicas/epidemiologia , Infecções Meningocócicas/microbiologia , Infecções Meningocócicas/prevenção & controle , Tipagem de Sequências Multilocus , Neisseria meningitidis/genética , Sorogrupo , Taiwan/epidemiologia
10.
J Microbiol Immunol Infect ; 55(1): 102-106, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33485793

RESUMO

BACKGROUND: Cholera, a rapidly dehydrating diarrheal disease caused by toxigenic Vibrio cholerae, is a leading cause of morbidity and mortality in some regions of the world. Core genome multilocus sequence typing (cgMLST) is a promising approach in generating genetic fingerprints from whole-genome sequencing (WGS) data for strain comparison among laboratories. METHODS: We constructed a V. cholerae core gene allele database using an in-house developed computational pipeline, a database with cgMLST profiles converted from genomic sequences from the National Center for Biotechnology Information, and built a REST-based web accessible via the Internet. RESULTS: We built a web service platform-cgMLST@Taiwan and installed a V. cholerae allele database, a cgMLST profile database, and computational tools for generating V. cholerae cgMLST profiles (based on 3,017 core genes), performing rapid global strain tracking, and clustering analysis of cgMLST profiles. This web-based platform provides services to researchers, public health microbiologists, and physicians who use WGS data for the investigation of cholera outbreaks and tracking of V. cholerae strain transmission across countries and geographic regions. The cgMLST@Taiwan is accessible at http://rdvd.cdc.gov.tw/cgMLST.


Assuntos
Cólera , Bases de Dados Genéticas , Vibrio cholerae , Cólera/epidemiologia , Genoma Bacteriano/genética , Humanos , Internet , Tipagem de Sequências Multilocus , Filogenia , Taiwan , Vibrio cholerae/genética , Sequenciamento Completo do Genoma
11.
Antimicrob Agents Chemother ; 66(1): e0115221, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34694885

RESUMO

In investigating the epidemiological trends of Salmonella enterica serovar Goldcoast, we previously identified several closely related strains with different MICs to azithromycin and quinolones. Genome sequencing and comparison of two very similar multidrug-resistant (MDR) strains, R18.0877 and R18.1656, has led to the identification of an extra plasmid-borne ramA gene, ramAp, on the large IncHI2 plasmid carried by R18.0877. The ramAp gene is located in a 953-bp region on the plasmid, which is identical to that of the Klebsiella quasipneumoniae chromosomal ramA loci. A truncated ISEcp1 located at the adjacent upstream area of the putative regulatory region of ramAp may likely contribute to its mobilization and expression. Introducing the ramAp gene and the truncated ISEcp1 into Escherichia coli has resulted in elevated expression of efflux pump genes and elevated MICs to chloramphenicol, azithromycin, nalidixic acid, ciprofloxacin, sulfamethoxazole, trimethoprim, tetracycline, and tigecycline. The ramAp is an extra efflux pump activator gene that potentially could be transmitted with the IncHI2 plasmid among bacteria. It is plausible that, with high interspecific conservation, the plasmid-encoded regulator reduces drug susceptibility by activating existing efflux pump systems of the host and thus can be regarded as a new type of auxiliary antimicrobial resistance determinant. Sequences of similar plasmids were found worldwide. Its impact on the emergence of antimicrobial resistance among bacterial pathogens is worrisome.


Assuntos
Farmacorresistência Bacteriana Múltipla , Salmonella typhimurium , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Salmonella typhimurium/genética , Tigeciclina
12.
Antimicrob Agents Chemother ; 66(1): e0173621, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34748382

RESUMO

Campylobacter coli and Campylobacter Jejuni are highly resistant to most therapeutic antimicrobials in Taiwan; rapid diagnostics of resistance in bacterial isolates is crucial for the treatment of campylobacteriosis. We characterized 219 (40 C. coli and 179 C. jejuni) isolates recovered from humans from 2016 to 2019 using whole-genome sequencing to investigate the genetic diversity among isolates and the genetic resistance determinants associated with antimicrobial resistance. Susceptibility testing with 8 antimicrobials was conducted to assess the concordance between phenotypic resistance and genetic determinants. The conventional and core genome multilocus sequence typing analysis revealed diverse clonality among the isolates. Mutations in gyrA (T86I, D90N), rpsL (K43R, K88R), and 23S rRNA (A2075G) were found in 91.8%, 3.2%, and 6.4% of the isolates, respectively. The horizontally transferable resistance genes ant(6)-I, aad9, aph(3')-IIIa, aph(2″), blaOXA, catA/fexA, cfr(C), erm(B), lnu, sat4, and tet were identified in 24.2%, 21.5%, 33.3%, 11.9%, 96.3%, 10.0%, 0.9%, 6.8%, 3.2%, 13.2%, and 96.3%, respectively. High-level resistance to 8 antimicrobials in isolates was 100% predictable by the known resistance determinants, whereas low-level resistance to azithromycin, clindamycin, nalidixic acid, ciprofloxacin, and florfenicol in isolates was associated with sequence variations in CmeA and CmeB of the CmeABC efflux pump. Resistance-enhancing CmeB variants were identified in 62.1% (136/219) of isolates. In conclusion, an extremely high proportion of C. coli (100%) and C. jejuni (88.3%) were multidrug-resistant, and a high proportion (62.5%) of C. coli isolates were resistant to azithromycin, erythromycin, and clindamycin, which would complicate the treatment of invasive campylobacteriosis in this country.


Assuntos
Infecções por Campylobacter , Campylobacter coli , Campylobacter jejuni , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Campylobacter/tratamento farmacológico , Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/microbiologia , Farmacorresistência Bacteriana/genética , Humanos , Testes de Sensibilidade Microbiana , Taiwan/epidemiologia
13.
BMC Oral Health ; 21(1): 655, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922521

RESUMO

BACKGROUND: To evaluate a cross-shaped incision technique for thick-gingiva and thin-gingiva patients treated with implant-supported fixed prosthesis. METHODS: Total 55 patients receiving cross-shaped incision were assigned into thick-gingiva group (29 cases) and thin-gingiva group (26 cases). Follow-up was performed at 3 and 12-month after final restoration. RESULTS: Mesial and distal papilla height was significantly greater in thick-gingiva group than thin-gingiva group at 3 and 12 months, while periodontal depth and crestal marginal bone level around implant had no significant difference between the two groups during follow-up. No case of recession of buccal marginal gingiva was observed in thick-gingiva group. However, the recession of marginal gingiva of buccal aspect of the crown was found in 5 patients (19.2%) with thin-gingiva. CONCLUSIONS: The cross-shaped incision may be applied to reconstruct gingival papillae and avoid the gingival recession in patients with thick-gingiva phenotype. Trial registration This study was registered at ClinicalTrials.gov (registration number NCT04706078, date 12 January 2021, Retrospectively registered).


Assuntos
Implantes Dentários para Um Único Dente , Implantes Dentários , Doenças da Gengiva , Retração Gengival , Seguimentos , Gengiva , Retração Gengival/cirurgia , Humanos
14.
Anaerobe ; 70: 102381, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34082120

RESUMO

Clostridioides difficile is a gram-positive, spore-forming anaerobic bacterium, and the leading cause of antibiotic-associated diarrhea worldwide. During C. difficile infection, spores germinate in the presence of bile acids into vegetative cells that subsequently colonize the large intestine and produce toxins. In this study, we demonstrated that C. difficile spores can universally adhere to, and be phagocytosed by, murine macrophages. Only spores from toxigenic strains were able to significantly stimulate the production of inflammatory cytokines by macrophages and subsequently induce significant cytotoxicity. Spores from the isogenic TcdA and TcdB double mutant induced significantly lower inflammatory cytokines and cytotoxicity in macrophages, and these activities were restored by pre-exposure of the spores to either toxins. These findings suggest that during sporulation, spores might be coated with C. difficile toxins from the environment, which could affect C. difficile pathogenesis in vivo.


Assuntos
Clostridioides difficile/imunologia , Infecções por Clostridium/imunologia , Citocinas/imunologia , Macrófagos/imunologia , Esporos Bacterianos/imunologia , Animais , Toxinas Bacterianas/imunologia , Clostridioides difficile/genética , Infecções por Clostridium/genética , Infecções por Clostridium/microbiologia , Citocinas/genética , Humanos , Macrófagos/microbiologia , Camundongos , Células RAW 264.7 , Esporos Bacterianos/genética
15.
Acta Biomater ; 130: 395-408, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34129954

RESUMO

Diabetic cardiomyopathy (DCM) is a serious cardiac complication of diabetes that currently lacks specific treatment. Fibroblast growth factor 21 (FGF21) has been proved to have cardioprotective effect in DCM. However, the insufficient cardiac delivery effect of FGF21 limits its application in DCM. Therefore, to improve the therapeutic efficacy of FGF21 in DCM, an effective drug delivery system is urgently required. In this study, perfluoropropane (C3F8) and polyethylenimine (PEI)-doped poly (lactic-co-glycolic acid) (PLGA) nanobubbles (CPPNBs) were synthesized via double-emulsion evaporation and FGF21 was efficiently absorbed (CPPNBs@FGF21) via the electrostatic incorporation effect. CPPNBs@FGF21 could effectively deliver FGF21 to the myocardial tissue through the cavitation effect under low-frequency ultrasound (LFUS). The as-prepared CPPNBs@FGF21 could efficiently load FGF21 after doping with the cationic polymer PEI, and displayed uniform dispersion and favorable biosafety. After filling with C3F8, CPPNBs@FGF21 could be used for distribution monitoring through ultrasound imaging. Moreover, CPPNBs@FGF21 significantly downregulated the expression of ANP, CTGF, and caspase-3 mRNA via the action of LFUS owing to increased FGF21 release, therefore exhibiting enhanced inhibition of myocardial hypertrophy, apoptosis, and interstitial fibrosis in DCM mice. In conclusion, we established an effective protein delivery nanocarrier for the diagnosis and prophylactic treatment of DCM. STATEMENT OF SIGNIFICANCE: Diabetic cardiomyopathy (DCM) is a serious cardiac complication of diabetes that currently lacks effective clinical treatments. Fibroblast growth factor 21 (FGF21) can protect cardiomyocytes from diabetic damage, but insufficient cardiac drug delivery limits the application of FGF21 in DCM. In this study, perfluoropropane (C3F8) and polyethylenimine (PEI)-doped poly (lactic-co-glycolic acid) (PLGA) nanobubbles loaded with FGF21 (CPPNBs@FGF21) were developed for the prophylactic treatment of DCM. CPPNBs@FGF21 could effectively deliver the FGF21 to the myocardial tissue through the cavitation effect of low-frequency ultrasound (LFUS). Our results indicated that CPPNBs@FGF21 combined with LFUS could significantly down-regulate the expressions of ANP, CTGF, and caspase-3 mRNA, and as a result, it prevented the myocardial hypertrophy, apoptosis, and interstitial fibrosis of DCM mice. Overall, we established an effective protein delivery nanocarrier for the diagnosis and prophylactic treatment of DCM.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Animais , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/prevenção & controle , Fatores de Crescimento de Fibroblastos , Camundongos , Miócitos Cardíacos , Ultrassonografia
16.
Nano Lett ; 21(1): 298-307, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33356327

RESUMO

Epigenetic dysregulations resulting from the defects of epigenetic regulators are often reversible in tumorigenesis, making them promising cancer therapeutic targets. However, the limited specificity of action, short-term stability, and low retention of the epigenetic drugs greatly impede their clinical efficacy against solid tumors. Herein a method of combinatorial delivery of epigenetic modulatory drugs via a molecular self-assembly strategy was developed using inhibitors of DNA methyltransferases and histone deacetylases. The drug-drug conjugates can self-assemble into nanofibers with enhanced chemical stability. The nanofibers synergistically regulate aberrant DNA methylation and histone deacetylation, subsequently reprogram the gene expression profiles, and finally inhibit gastric cancer cell proliferation and promote cell apoptosis. The superior in vivo therapeutic efficacy of the nanofibers could be ascribed to the prolonged retention and accumulation in tumors and the minimized off-target effects. Therefore, this design of epigenetic-drug-based nanofiber formulation may provide a valuable paradigm for cancer therapy through epigenetic reprogramming.


Assuntos
Antineoplásicos , Nanofibras , Neoplasias , Neoplasias Gástricas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Metilação de DNA , Epigênese Genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética
18.
Colloids Surf B Biointerfaces ; 197: 111430, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33125976

RESUMO

Affinity membrane is widely employed to promote specific adsorption of toxins and reduce the blood purification therapeutic time. However, it suffers from insufficient toxin binding and low hemocompatibility. Herein, a novel anticoagulant affinity membrane (AAM) was developed to clear bilirubin from human blood in a pore-flow-through way. Firstly, a nylon net membrane with a regularly arranged pore as the matrix was coated with poly(pyrrole-3-carboxylic acid) via chemical vapor deposition (CVD) method. Then, poly(L-arginine) (PLA) as a highly specific ligand of bilirubin, was immobilized onto the surface of the composited membrane after the modification of heparin. Owing to the 3-dimensional molecular architecture of PLA, up to 86.1 % of bilirubin was efficiently cleared. Besides, the AAM exhibited effective anticoagulant activity in the measurement of clotting time, with suppressed thrombus formation, low hemolysis ratio, minimized platelet and leukocyte adhesion, and excellent biosafety. Therefore, the AAM has enormous potential in blood purification therapy for enhancing hemocompatibility and bilirubin removal.


Assuntos
Anticoagulantes , Trombose , Adsorção , Anticoagulantes/farmacologia , Bilirrubina , Heparina , Humanos , Teste de Materiais , Adesividade Plaquetária
19.
Theranostics ; 10(12): 5565-5577, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373231

RESUMO

Chondral and osteochondral defects caused by trauma or pathological changes, commonly progress into total joint degradation, even resulting in disability. The cartilage restoration is a great challenge because of its avascularity and limited proliferative ability. Additionally, precise diagnosis using non-invasive detection techniques is challenging, which increases problems associated with chondral disease treatment. Methods: To achieve a theranostic goal, we used an integrated strategy that relies on exploiting a multifunctional nanoprobe based on chitosan-modified Fe3O4 nanoparticles, which spontaneously self-assemble with the oppositely charged small molecule growth factor, kartogenin (KGN). This nanoprobe was used to obtain distinctively brighter T2-weighted magnetic resonance (MR) imaging, allowing its use as a positive contrast agent, and could be applied to obtain accurate diagnosis and osteochondral regeneration therapy. Results: This nanoprobe was first investigated using adipose tissue-derived stem cells (ADSCs), and was found to be a novel positive contrast agent that also plays a significant role in stimulating ADSCs differentiation into chondrocytes. This self-assembled probe was not only biocompatible both in vitro and in vivo, contributing to cellular internalization, but was also used to successfully make distinction of normal/damaged tissue in T2-weighted MR imaging. This novel combination was systematically shown to be biosafe via the decrement of apparent MR signals and elimination of ferroferric oxide over a 12-week regeneration period. Conclusion: Here, we established a novel method for osteochondral disease diagnosis and reconstruction. Using the Fe3O4-CS/KGN nanoprobe, it is easy to distinguish the defect position, and it could act as a tool for dynamic observation as well as a stem cell-based therapy for directionally chondral differentiation.


Assuntos
Anilidas/farmacologia , Doenças das Cartilagens/terapia , Quitosana/química , Condrócitos/citologia , Células-Tronco Mesenquimais/citologia , Nanopartículas/administração & dosagem , Ácidos Ftálicos/farmacologia , Anilidas/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Doenças das Cartilagens/metabolismo , Doenças das Cartilagens/patologia , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Modelos Animais de Doenças , Óxido Ferroso-Férrico/química , Óxido Ferroso-Férrico/farmacologia , Imageamento por Ressonância Magnética/métodos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/química , Ácidos Ftálicos/química , Coelhos , Regeneração/fisiologia
20.
Nanoscale ; 12(5): 3090-3102, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31965129

RESUMO

The critical issue in nanoscale medicine delivery systems is the targeted efficiency to guarantee the maximum accumulation of nanodrugs in tumors to exert better therapeutic action. In this study, we adopted an active and potent strategy based on mesenchymal stem cells (MSCs) certified with excellent tumor-tropism ability to load and ship MnO2@Ce6 nanoparticles into a tumor site. Notably, under the premise of the negligible cellular toxicity of MnO2@Ce6 on MSCs, its considerable uptake by MSCs enabled this nanoplatform (MnO2@Ce6-MSCs) to distribute increasingly inside the tumor. Briefly, a Ce6 photosensitizer was bound to MnO2 nanospheres by physical adsorption, improving its own stability in blood circulation. Furthermore, the delivered MnO2@Ce6 could modulate the tumor microenvironment (TME) by high sensitivity to excess hydrogen protons (H+) and H2O2. Thus, O2 generated by these reactions served as an abundant source for 1O2 conversion under a 633 nm laser exposure, which overcame the crucial bottleneck of the unfavorable hypoxia condition in TME for photodynamic therapy (PDT). In addition, MnO2 decomposed into Mn2+, which was represented by high T1 relaxivity in magnetic resonance imaging (MRI). The Mn2+ was finally removed rapidly from the body by liver metabolism and kidney filtration. These results endowed the original nanoplatform with striking potential for MSC-guided, Ce6-converted, MRI-monitored PDT for further innovation of a clinical cancer diagnosis-treatment agent.


Assuntos
Neoplasias Pulmonares/terapia , Compostos de Manganês/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/uso terapêutico , Oxigênio/metabolismo , Fotoquimioterapia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Células-Tronco Mesenquimais/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Fármacos Fotossensibilizantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA