RESUMO
The suppression of mitotic Aurora kinases (AURKs) by AURK inhibitors frequently causes cytokinetic failure, leading to polyploidy or aneuploidy, indicating the critical role of AURK-mediated phosphorylation during cytokinesis. We demonstrate the deregulated expression of AKT3 in Aurora kinase inhibitor (AURKi)-resistant cells, which we established from human colorectal cancer HCT 116 cells. The AKT family, which includes AKT1, -2, and -3, plays multiple roles in antiapoptotic functions and drug resistance and is involved in cell growth and survival pathways. We found that an AKT inhibitor, AZD5363, showed synergistic effect with an AURKi, VX-680, on two AKT3-expressing AURKi-resistant cell lines, and AKT3 knockdown sensitized cells to VX-680. Consistent with these activities, AKT3 expression suppressed AURKi-induced apoptosis and conferred resistance to AURKi. Thus, AKT3 expression affects cell sensitivity to AURKi. Moreover, we found that AKT3 expression suppressed AURKi-induced aneuploidy, and inversely AKT3 knockdown enhanced it. In addition, partial co-localization of AKT3 with AURKB was observed during anaphase. Overall, this study suggests that AKT3 could repress the antiproliferative effects of AURKi, with a novel activity particularly suppressing the aneuploidy induction.
Assuntos
Anáfase/efeitos dos fármacos , Aurora Quinase B/antagonistas & inibidores , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-akt/biossíntese , Pirimidinas/farmacologia , Pirróis/farmacologia , Aneuploidia , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Proteínas Proto-Oncogênicas c-akt/genéticaRESUMO
BACKGROUND: Previously, we have demonstrated that human ABCB5 is a full-sized ATP-binding cassette transporter that shares strong homology with ABCB1/P-glycoprotein. ABCB5-transfected cells showed resistance to taxanes and anthracyclines. Herein, we further screened ABCB5 substrates, and explored the mechanism of resistance. METHODS: Sensitivity of the cells to test compounds was evaluated using cell growth inhibition assay. Cellular levels of buthionine sulfoximine (BSO), glutathione and amino acids were measured using HPLC and an enzyme-based assay. Cellular and vesicular transport of glutathione was evaluated by a radiolabeled substrate. Expression levels of glutathione-metabolizing enzymes were assessed by RT-PCR. RESULTS: Human ABCB5-transfected 293/B5-11 cells and murine Abcb5-transfected 293/mb5-8 cells showed 6.5- and 14-fold higher resistance to BSO than the mock-transfected 293/mock cells, respectively. BSO is an inhibitor of gamma-glutamylcysteine ligase (GCL), which is a key enzyme of glutathione synthesis. 293/B5-11 and 293/mb5-8 cells also showed resistance to methionine sulfoximine, another GCL inhibitor. A cellular uptake experiment revealed that BSO accumulation in 293/B5-11 and 293/mb5-8 cells was similar to that in 293/mock cells, suggesting that BSO is not an ABCB5 substrate. The cellular glutathione content in 293/B5-11 and 293/mb5-8 cells was significantly higher than that in 293/mock cells. Evaluation of the BSO effect on the cellular glutathione content showed that compared with 293/mock cells the BSO concentration required for a 50 % reduction in glutathione content in 293/B5-11 and 293/mb5-8 cells was approximately 2- to 3-fold higher. This result suggests that the BSO resistance of the ABCB5- and Abcb5-transfected cells can be attributed to the reduced effect of BSO on the transfectants. Cellular and vesicular transport assays showed that the transport of radiolabeled glutathione in 293/B5-11 cells was similar to that in 293/mock cells. The mRNA expression of genes encoding glutathione-metabolizing enzymes in 293/B5-11 cells was similar to that in 293/mock cells. The cellular content of Glu, a precursor of glutathione, in 293/B5-11 and 293/mb5-8 cells was higher than that in 293/mock cells. CONCLUSIONS: ABCB5/Abcb5-transfected cells showed resistance to BSO, which is not a substrate of ABCB5. Our results suggest that ABCB5/Abcb5 upregulates cellular glutathione levels to protect cells from various poisons.