Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 6(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36858798

RESUMO

RAS-mediated human cell transformation requires inhibition of the tumor suppressor protein phosphatase 2A (PP2A). However, the phosphoprotein targets and cellular processes in which RAS and PP2A activities converge in human cancers have not been systematically analyzed. Here, we discover that phosphosites co-regulated by RAS and PP2A are enriched on proteins involved in epigenetic gene regulation. As examples, RAS and PP2A co-regulate the same phosphorylation sites on HDAC1/2, KDM1A, MTA1/2, RNF168, and TP53BP1. We validate RAS- and PP2A-elicited regulation of HDAC1/2 chromatin recruitment, of RNF168-TP53BP1 interaction, and of gene expression. Consistent with their known synergistic effects in cancer, RAS activation and PP2A inhibition resulted in epigenetic reporter derepression and activation of oncogenic transcription. Transcriptional derepression by PP2A inhibition was associated with an increase in euchromatin and a decrease in global DNA methylation. Collectively, the results indicate that epigenetic protein complexes constitute a significant point of convergence for RAS hyperactivity and PP2A inhibition in cancer. Furthermore, the work provides an important resource for future studies focusing on phosphoregulation of epigenetic gene regulation in cancer and in other RAS/PP2A-regulated cellular processes.


Assuntos
Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica , Proteína Fosfatase 2 , Proteínas ras , Humanos , Epigenômica , Histona Desmetilases , Fosfoproteínas , Proteínas Repressoras , Transativadores , Ubiquitina-Proteína Ligases , Proteínas ras/metabolismo , Proteína Fosfatase 2/metabolismo
2.
Nat Commun ; 14(1): 1143, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854761

RESUMO

The protein phosphatase 2A (PP2A) heterotrimer PP2A-B56α is a human tumour suppressor. However, the molecular mechanisms inhibiting PP2A-B56α in cancer are poorly understood. Here, we report molecular level details and structural mechanisms of PP2A-B56α inhibition by an oncoprotein CIP2A. Upon direct binding to PP2A-B56α trimer, CIP2A displaces the PP2A-A subunit and thereby hijacks both the B56α, and the catalytic PP2Ac subunit to form a CIP2A-B56α-PP2Ac pseudotrimer. Further, CIP2A competes with B56α substrate binding by blocking the LxxIxE-motif substrate binding pocket on B56α. Relevant to oncogenic activity of CIP2A across human cancers, the N-terminal head domain-mediated interaction with B56α stabilizes CIP2A protein. Functionally, CRISPR/Cas9-mediated single amino acid mutagenesis of the head domain blunted MYC expression and MEK phosphorylation, and abrogated triple-negative breast cancer in vivo tumour growth. Collectively, we discover a unique multi-step hijack and mute protein complex regulation mechanism resulting in tumour suppressor PP2A-B56α inhibition. Further, the results unfold a structural determinant for the oncogenic activity of CIP2A, potentially facilitating therapeutic modulation of CIP2A in cancer and other diseases.


Assuntos
Carcinogênese , Proteína Fosfatase 2 , Processamento de Proteína Pós-Traducional , Neoplasias de Mama Triplo Negativas , Humanos , Aminoácidos , Carcinogênese/genética , Carcinogênese/metabolismo , Domínio Catalítico , Fosforilação , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/ultraestrutura , Neoplasias de Mama Triplo Negativas/metabolismo
3.
Cell Rep ; 38(9): 110457, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235780

RESUMO

Bifurcation of cellular fates, a critical process in development, requires histone 3 lysine 27 methylation (H3K27me3) marks propagated by the polycomb repressive complex 2 (PRC2). However, precise chromatin loci of functional H3K27me3 marks are not yet known. Here, we identify critical PRC2 functional sites at high resolution. We fused a computationally designed protein, EED binder (EB), which competes with EZH2 and thereby inhibits PRC2 function, to dCas9 (EBdCas9) to allow for PRC2 inhibition at a precise locus using gRNA. Targeting EBdCas9 to four different genes (TBX18, p16, CDX2, and GATA3) results in precise H3K27me3 and EZH2 reduction, gene activation, and functional outcomes in the cell cycle (p16) or trophoblast transdifferentiation (CDX2 and GATA3). In the case of TBX18, we identify a PRC2-controlled, functional TATA box >500 bp upstream of the TBX18 transcription start site (TSS) using EBdCas9. Deletion of this TATA box eliminates EBdCas9-dependent TATA binding protein (TBP) recruitment and transcriptional activation. EBdCas9 technology may provide a broadly applicable tool for epigenomic control of gene regulation.


Assuntos
Histonas , Complexo Repressor Polycomb 2 , Cromatina , Computadores , Histonas/metabolismo , Complexo Repressor Polycomb 2/metabolismo , TATA Box
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA