Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(4)2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38675881

RESUMO

Rabbit hemorrhagic disease virus 2 (RHDV2) emerged in the United States in 2018 and has spread in both domestic and wild rabbits nationwide. The virus has a high mortality rate and can spread rapidly once introduced in a rabbit population. Vaccination against RHDV2 provides the best protection against disease and should be considered by all rabbit owners. Here, we investigate the duration of immunity provided by vaccination with the Medgene Platform conditionally licensed commercial vaccine 6 months following the initial series. Rabbits received either the vaccination or a placebo and were challenged with RHDV2 6 months later. All vaccinated rabbits survived challenge whereas 18/19 non-vaccinated controls succumbed to infection within 10 or fewer days post-challenge. These results demonstrate lasting immunity following vaccination with the Medgene RHDV2 vaccine.


Assuntos
Baculoviridae , Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Vacinação , Vacinas Sintéticas , Vacinas Virais , Animais , Vírus da Doença Hemorrágica de Coelhos/imunologia , Vírus da Doença Hemorrágica de Coelhos/genética , Coelhos , Infecções por Caliciviridae/prevenção & controle , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/virologia , Infecções por Caliciviridae/veterinária , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Baculoviridae/genética , Baculoviridae/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia
2.
Radiother Oncol ; 77(1): 111-6, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16095737

RESUMO

BACKGROUND AND PURPOSE: Improved radiotherapy techniques in pediatric craniospinal therapy (CSRT) strive to reduce risks of late morbidity. Using a pediatric anthropomorphic phantom, this research correlated measured target and normal tissue dose to that predicted from a 3D planning system (3D-RTP). PATIENTS AND METHODS: A pediatric anthropomorphic phantom was planned following French Society of Pediatric Oncology (SFOP) protocols. Thermoluminescent detectors (TLDs) were used to perform dosimetric measurements during treatment. 4 and 6MV photon fields with multi leaf collimation (MLC) or custom blocks were compared to 3D-RTP computer (ADAC Pinnacle) predictions for cranial fields. Spinal dosimetry was studied using photons (4 and 6MV) and electrons (9 and 12MeV). RESULTS: 3D-RTP predictions generally concurred with dose received in cranial and spinal sites. The measured dose was over-predicted significantly by the 3D-RTP in the anterior cranial fossa. Normal tissue doses were reduced when treating the spine using megavoltage electron beams instead of photons. CONCLUSIONS: Treating the spinal field with electrons minimises the risk of pulmonary sequelae, however electron energy selection is critical to achieve adequate spinal field coverage. Despite adhering to a major trial protocol guideline, dose at the floor of the anterior cranial fossa remains a potential clinical problem and 3D-RTP do not predict this well.


Assuntos
Neoplasias Cerebelares/radioterapia , Meduloblastoma/radioterapia , Lesões por Radiação/prevenção & controle , Radioterapia Conformacional/métodos , Dosimetria Termoluminescente/métodos , Antropometria , Artefatos , Pré-Escolar , Elétrons , Humanos , Fótons
3.
Phys Med Biol ; 49(17): 3831-45, 2004 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-15470908

RESUMO

In many medical procedures where accurate radiation dose measurements are needed, the variation of detector response with x-ray energy is of concern. The response of LiF:Mg,Cu,P TLDs to a range of x-ray energies was analysed in monoenergetic (synchrotron), diagnostic and therapy radiation beams with the aim of implementing this dosimeter into clinical practice where existing dosimetry techniques are limited due to lack of sensitivity or tissue equivalence (e.g. neonatal radiography, mammography and brachytherapy). LiF:Mg,Cu,P TLDs in different forms from two manufacturers (MCP-N: TLD Poland, GR200: SDDML China) were irradiated using x-ray beams covering 10 keV to 18 MVp. Dose readings were compared with an ionization chamber. The effect of different TLD types and annealing cycles on clinical utility was investigated. The measured energy response of LiF:Mg,Cu,P TLDs was fit to a simple model devised by Kron et al (1998 Phys. Med. Biol. 43 3235-59) to describe the variation of TLD response with x-ray energy. If TLDs are handled as recommended in the present paper, the energy response of LiF:Mg,Cu,P deviates by a maximum of 15% from unity and agrees with the model to within 5% or experimental uncertainty between 15 keV and 10 MeV. LiF:Mg,Cu,P TLDs of all forms have consistent and superior energy response compared to the standard material LiF:Mg,Ti and are therefore suitable for a wide range of applications in diagnostic radiology and radiotherapy.


Assuntos
Cobre/química , Fluoretos/química , Compostos de Lítio/química , Magnésio/química , Fósforo/química , Doses de Radiação , Radiometria/instrumentação , Radiometria/métodos , Dosimetria Termoluminescente/métodos , Raios X , Braquiterapia/métodos , Humanos , Radioisótopos de Irídio/uso terapêutico , Mamografia/métodos , Modelos Teóricos , Imagens de Fantasmas , Radioterapia/métodos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA