Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38923787

RESUMO

Monosodium methanearsonate (MSMA), a sodium salt of monomethylarsonic acid (MMA), is a selective contact herbicide used for the control of a broad spectrum of weeds. In water, MSMA dissociates to ions of sodium (Na+) and monomethylarsonate (MMA-) that is stable and does not transform abiotically. In soils characteristic of MSMA use, several simultaneous processes can occur: (1) microbial methylation of MMA to dimethylarsinic acid (DMA), (2) microbial demethylation of MMA to inorganic arsenic (iAs), (3) methylation of iAs to MMA, and (4) sorption and sequestration of MMA and its metabolites to soil minerals. Sequestered residues are residues that cannot be desorbed from soil in environmental conditions. Sequestration is rapid in the initial several days after MSMA application and continues at a progressively slower rate over time. Once sequestered, MMA and its metabolites are inaccessible to soil microorganisms and cannot be transformed. The rate and extent of the sorption and sequestration as well as the mobility of MMA and its metabolites depend on the local edaphic conditions. In typical MSMA use areas, the variability of the edaphic conditions is constrained. The goal of this research was to estimate the amount of iAs potentially added to drinking water as a result of the use of MSMA, with models and scenarios developed by the US Environmental Protection Agency for pesticide risk assessment. In this project, the estimated drinking water concentrations (EDWCs) for iAs were assessed as the average concentration in the reservoir over a 30-year simulation with annual applications of MSMA at maximum label rates. When the total area of suitable land was assumed to be treated, EDWCs ranged from <0.001 to 0.12 µg/L. When high estimates of actually treated acreage are considered, the EDWCs are below 0.06 µg/L across all scenarios. Integr Environ Assess Manag 2024;00:1-12. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

2.
PLoS One ; 15(5): e0230990, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32357151

RESUMO

The goal of this study was to determine the co-occurrence between acetochlor use on crops and potentially vulnerable soils in the Permanent Interstate Committee for Drought Control in the Sahel region of Western Africa. Acetochlor, a pre-emergence herbicide, is used primarily on row crops and has the potential to reach groundwater or surface water following a rain event shortly after application. Off-field transport is often determined by soil properties; therefore, soils within potential use areas were assessed and mapped to establish areas with soils vulnerable to leaching and/or runoff. Corn and cotton production areas were used as surrogate crops for high potential use areas of acetochlor within areas identified using GlobCover land use data and the Spatial Production Allocation Model agricultural statistics data. The geospatial analysis identified approximately 462 million ha of potentially vulnerable soils in the Sahel region of which 65.7 million ha are within agricultural areas. An adjustment for corn and cotton production areas showed that 2.2 million ha or 3.3% of agricultural fields could have potential restrictions for acetochlor use. Approximately 0.159 million ha of soils or 0.24% of agricultural fields are in the presence of shallow groundwater, defined by depth < 9 m. In addition, 0.0128 million ha or 0.02% were determined to be adjacent to surface water bodies. To understand the uncertainty associated with the use of specific land cover datasets, an overlay assessment was conducted using alternative data sources. Overlap between selected land cover datasets in the Sahel region varies and ranges from 24.7% to 75.5% based on a merged 2009 GlobCover and CCI LC datasets. In comparison with the merged 2005 and 2009 GlobCover dataset, the cropland overlaps range from 38.9% to 85.0%. This demonstrates that the choice of land cover dataset can have a significant impact on a spatial assessment. Results from this assessment demonstrate that only a small fraction of vulnerable agricultural soils across the region may be a risk for contamination by acetochlor of groundwater or surface resources, based on product label recommendations. Given the availability of spatial data in a region, the methods contained herein may additionally be used in other localities to provide similar information that can be helpful for water quality management.


Assuntos
Biodegradação Ambiental , Monitoramento Ambiental/métodos , Água Subterrânea/análise , Herbicidas/análise , Poluentes do Solo/análise , Toluidinas/análise , Qualidade da Água/normas , África Ocidental , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA