Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain ; 147(1): 147-162, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37640028

RESUMO

Multiple sclerosis is a chronic neuroinflammatory disorder characterized by demyelination, oligodendrocyte damage/loss and neuroaxonal injury in the context of immune cell infiltration in the CNS. No neuroprotective therapy is available to promote the survival of oligodendrocytes and protect their myelin processes in immune-mediated demyelinating diseases. Pro-inflammatory CD4 Th17 cells can interact with oligodendrocytes in multiple sclerosis and its animal model, causing injury to myelinating processes and cell death through direct contact. However, the molecular mechanisms underlying the close contact and subsequent detrimental interaction of Th17 cells with oligodendrocytes remain unclear. In this study we used single cell RNA sequencing, flow cytometry and immunofluorescence studies on CNS tissue from multiple sclerosis subjects, its animal model and controls to characterize the expression of cell adhesion molecules by mature oligodendrocytes. We found that a significant proportion of human and murine mature oligodendrocytes express melanoma cell adhesion molecule (MCAM) and activated leukocyte cell adhesion molecule (ALCAM) in multiple sclerosis, in experimental autoimmune encephalomyelitis and in controls, although their regulation differs between human and mouse. We observed that exposure to pro-inflammatory cytokines or to human activated T cells are associated with a marked downregulation of the expression of MCAM but not of ALCAM at the surface of human primary oligodendrocytes. Furthermore, we used in vitro live imaging, immunofluorescence and flow cytometry to determine the contribution of these molecules to Th17-polarized cell adhesion and cytotoxicity towards human oligodendrocytes. Silencing and blocking ALCAM but not MCAM limited prolonged interactions between human primary oligodendrocytes and Th17-polarized cells, resulting in decreased adhesion of Th17-polarized cells to oligodendrocytes and conferring significant protection of oligodendrocytic processes. In conclusion, we showed that human oligodendrocytes express MCAM and ALCAM, which are differently modulated by inflammation and T cell contact. We found that ALCAM is a ligand for Th17-polarized cells, contributing to their capacity to adhere and induce damage to human oligodendrocytes, and therefore could represent a relevant target for neuroprotection in multiple sclerosis.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Humanos , Camundongos , Animais , Linfócitos T CD4-Positivos/metabolismo , Molécula de Adesão de Leucócito Ativado/metabolismo , Adesão Celular , Oligodendroglia/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-36446612

RESUMO

BACKGROUND AND OBJECTIVES: Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease characterized by infiltration of immune cells in multifocal areas of the CNS. The specific molecular processes allowing autoreactive immune cells to enter the CNS compartment through the blood-brain barrier remain elusive. METHODS: Using endothelial cell (EC) enrichment and single-cell RNA sequencing, we characterized the cells implicated in the neuroinflammatory processes in experimental autoimmune encephalomyelitis, an animal model of MS. Validations on human MS brain sections of the most differentially expressed genes in venous ECs were performed using immunohistochemistry and confocal microscopy. RESULTS: We found an upregulation of genes associated with antigen presentation and interferon in most populations of CNS-resident cells, including ECs. Interestingly, instead of transcriptionally distinct profiles, a continuous gradient of gene expression separated the arteriovenous zonation of the brain vasculature. However, differential gene expression analysis presented more transcriptomic alterations on the venous side of the axis, suggesting a prominent role of venous ECs in neuroinflammation. Furthermore, analysis of ligand-receptor interactions identified important potential molecular communications between venous ECs and infiltrated immune populations. To confirm the relevance of our observation in the context of human disease, we validated the protein expression of the most upregulated genes (Ackr1 and Lcn2) in MS lesions. DISCUSSION: In this study, we provide a landscape of the cellular heterogeneity associated with neuroinflammation. We also present important molecular insights for further exploration of specific cell processes that promote infiltration of immune cells inside the brain of experimental autoimmune encephalomyelitis mice.


Assuntos
Encefalite , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Doenças Neurodegenerativas , Humanos , Animais , Camundongos , Encefalomielite Autoimune Experimental/genética , Transcriptoma , Esclerose Múltipla/genética , Encéfalo , Endotélio
3.
Acta Neuropathol ; 144(2): 259-281, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35666306

RESUMO

Oncostatin M (OSM) is an IL-6 family member which exerts neuroprotective and remyelination-promoting effects after damage to the central nervous system (CNS). However, the role of OSM in neuro-inflammation is poorly understood. Here, we investigated OSM's role in pathological events important for the neuro-inflammatory disorder multiple sclerosis (MS). We show that OSM receptor (OSMRß) expression is increased on circulating lymphocytes of MS patients, indicating their elevated responsiveness to OSM signalling. In addition, OSM production by activated myeloid cells and astrocytes is increased in MS brain lesions. In experimental autoimmune encephalomyelitis (EAE), a preclinical model of MS, OSMRß-deficient mice exhibit milder clinical symptoms, accompanied by diminished T helper 17 (Th17) cell infiltration into the CNS and reduced BBB leakage. In vitro, OSM reduces BBB integrity by downregulating the junctional molecules claudin-5 and VE-cadherin, while promoting secretion of the Th17-attracting chemokine CCL20 by inflamed BBB-endothelial cells and reactive astrocytes. Using flow cytometric fluorescence resonance energy transfer (FRET) quantification, we found that OSM-induced endothelial CCL20 promotes activation of lymphocyte function-associated antigen 1 (LFA-1) on Th17 cells. Moreover, CCL20 enhances Th17 cell adhesion to OSM-treated inflamed endothelial cells, which is at least in part ICAM-1 mediated. Together, these data identify an OSM-CCL20 axis, in which OSM contributes significantly to BBB impairment during neuro-inflammation by inducing permeability while recruiting Th17 cells via enhanced endothelial CCL20 secretion and integrin activation. Therefore, care should be taken when considering OSM as a therapeutic agent for treatment of neuro-inflammatory diseases such as MS.


Assuntos
Barreira Hematoencefálica , Encefalomielite Autoimune Experimental , Oncostatina M , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Oncostatina M/metabolismo , Oncostatina M/farmacologia , Subunidade beta de Receptor de Oncostatina M/biossíntese , Subunidade beta de Receptor de Oncostatina M/genética , Células Th17/metabolismo , Células Th17/patologia
4.
Sci Transl Med ; 14(626): eabj0473, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34985970

RESUMO

The migration of circulating leukocytes into the central nervous system (CNS) is a key driver of multiple sclerosis (MS) pathogenesis. The monoclonal antibody natalizumab proved that pharmaceutically obstructing this process is an effective therapeutic approach for treating relapsing-remitting MS (RRMS). Unfortunately, the clinical efficacy of natalizumab is somewhat offset by its incapacity to control the progressive forms of MS (PMS) and by life-threatening side effects in RRMS rising from the expression of its molecular target, very late antigen 4 (VLA4), on most immune cells and consequent impairment of CNS immunosurveillance. Here, we identified dual immunoglobulin domain containing cell adhesion molecule (DICAM) as a cell trafficking molecule preferentially expressed by T helper 17 (TH17)­polarized CD4+ T lymphocytes. We found that DICAM expression on circulating CD4+ T cells was increased in patients with active RRMS and PMS disease courses, and expression of DICAM ligands was increased on the blood-brain barrier endothelium upon inflammation and in MS lesions. Last, we demonstrated that pharmaceutically neutralizing DICAM reduced murine and human TH17 cell trafficking across the blood-brain barrier in vitro and in vivo, and alleviated disease symptoms in four distinct murine autoimmune encephalomyelitis models, including relapsing-remitting and progressive disease models. Collectively, our data highlight DICAM as a candidate therapeutic target to impede the migration of disease-inducing leukocytes into the CNS in both RRMS and PMS and suggest that blocking DICAM with a monoclonal antibody may be a promising therapeutic approach.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Animais , Barreira Hematoencefálica/metabolismo , Moléculas de Adesão Celular/metabolismo , Humanos , Camundongos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Natalizumab/metabolismo , Natalizumab/farmacologia , Natalizumab/uso terapêutico , Doenças Neuroinflamatórias , Linfócitos T/metabolismo , Células Th17
5.
Biomater Sci ; 8(18): 4997-5004, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32931543

RESUMO

Interleukin-13 (IL-13) drives cells of myeloid origin towards a more anti-inflammatory phenotype, but delivery to the brain remains problematic. Herein, we show that heparin-based cryogel microcarriers load high amounts of IL-13, releasing it slowly. Intra-striatal injection of loaded microcarriers caused local up-regulation of ARG1 in myeloid cells for pro-regenerative immunomodulation in the brain.


Assuntos
Heparina , Interleucina-13 , Encéfalo , Criogéis
6.
Cells ; 8(2)2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30696113

RESUMO

Positron emission tomography (PET) ligands targeting the translocator protein (TSPO) represent promising tools to visualize neuroinflammation in multiple sclerosis (MS). Although it is known that TSPO is expressed in the outer mitochondria membrane, its cellular localization in the central nervous system under physiological and pathological conditions is not entirely clear. The purpose of this study was to assess the feasibility of utilizing PET imaging with the TSPO tracer, [18F]-GE180, to detect histopathological changes during experimental demyelination, and to determine which cell types express TSPO. C57BL/6 mice were fed with cuprizone for up to 5 weeks to induce demyelination. Groups of mice were investigated by [18F]-GE180 PET imaging at week 5. Recruitment of peripheral immune cells was triggered by combining cuprizone intoxication with MOG35⁻55 immunization (i.e., Cup/EAE). Immunofluorescence double-labelling and transgene mice were used to determine which cell types express TSPO. [18F]-GE180-PET reliably detected the cuprizone-induced pathology in various white and grey matter regions, including the corpus callosum, cortex, hippocampus, thalamus and caudoputamen. Cuprizone-induced demyelination was paralleled by an increase in TSPO expression, glia activation and axonal injury. Most of the microglia and around one-third of the astrocytes expressed TSPO. TSPO expression induction was more severe in the white matter corpus callosum compared to the grey matter cortex. Although mitochondria accumulate at sites of focal axonal injury, these mitochondria do not express TSPO. In Cup/EAE mice, both microglia and recruited monocytes contribute to the TSPO expressing cell populations. These findings support the notion that TSPO is a valuable marker for the in vivo visualization and quantification of neuropathological changes in the MS brain. The pathological substrate of an increase in TSPO-ligand binding might be diverse including microglia activation, peripheral monocyte recruitment, or astrocytosis, but not axonal injury.


Assuntos
Carbazóis/metabolismo , Esclerose Múltipla/diagnóstico por imagem , Receptores de GABA/metabolismo , Animais , Astrócitos/patologia , Astrócitos/ultraestrutura , Axônios/metabolismo , Axônios/ultraestrutura , Biomarcadores/metabolismo , Cuprizona , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/diagnóstico por imagem , Encefalomielite Autoimune Experimental/patologia , Feminino , Inflamação/patologia , Ligantes , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Monócitos/metabolismo , Neuroglia/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de GABA/genética
7.
J Neuroinflammation ; 15(1): 174, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29866203

RESUMO

BACKGROUND: Subtle adjustment of the activation status of CNS resident microglia and peripheral macrophages, to promote their neuroprotective and neuroregenerative functions, may facilitate research towards curing neurodegenerative disorders. In the present study, we investigated whether targeted intracerebral delivery of the anti-inflammatory cytokine interleukin (IL)13, by means of transplanting IL13-expressing mesenchymal stem cells (IL13-MSCs), can promote a phenotypic switch in both microglia and macrophages during the pro-inflammatory phase in a mouse model of ischemic stroke. METHODS: We used the CX3CR1eGFP/+ CCR2RFP/+ transgenic mouse model to separately recognize brain-resident microglia from infiltrated macrophages. Quantitative immunohistochemical analyses were applied to characterize polarization phenotypes of both cell types. RESULTS: Distinct behaviors of both cell populations were noted dependent on the anatomical site of the lesion. Immunohistochemistry revealed that mice grafted with IL13-MSCs, in contrast to non-grafted and MSC-grafted control mice, were able to drive recruited microglia and macrophages into an alternative activation state, as visualized by a significant increase of Arg-1 and a noticeable decrease of MHC-II expression at day 14 after ischemic stroke. Interestingly, both Arg-1 and MHC-II were expressed more abundantly in macrophages than in microglia, further confirming the distinct behavior of both cell populations. CONCLUSIONS: The current data highlight the importance of controlled and localized delivery of the anti-inflammatory cytokine IL13 for modulation of both microglia and macrophage responses after ischemic stroke, thereby providing pre-clinical rationale for the application of L13-MSCs in future investigations of neurodegenerative disorders.


Assuntos
Anti-Inflamatórios/uso terapêutico , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/terapia , Interleucina-13/uso terapêutico , Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Animais , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Média/fisiopatologia , Interleucina-13/genética , Interleucina-13/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Macrófagos/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Movimento/fisiologia , Força Muscular , Propriocepção , RNA Mensageiro/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Tato/fisiologia , Transdução Genética
8.
Glia ; 65(12): 1900-1913, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28836302

RESUMO

Brain-intrinsic degenerative cascades are a proposed factor driving inflammatory lesion formation in multiple sclerosis (MS) patients. We recently described a model combining noninflammatory cytodegeneration (via cuprizone) with the classic active experimental autoimmune encephalomyelitis (Cup/EAE model), which exhibits inflammatory forebrain lesions. Here, we describe the histopathological characteristics and progression of these Cup/EAE lesions. We show that inflammatory lesions develop at various topographical sites in the forebrain, including white matter tracts and cortical and subcortical grey matter areas. The lesions are characterized by focal demyelination, discontinuation of the perivascular glia limitans, focal axonal damage, and neutrophil granulocyte extravasation. Transgenic mice with enhanced green fluorescent protein-expressing microglia and red fluorescent protein-expressing monocytes reveal that both myeloid cell populations contribute to forebrain inflammatory infiltrates. EAE-triggered inflammatory cerebellar lesions were augmented in mice pre-intoxicated with cuprizone. Gene expression studies suggest roles of the chemokines Cxcl10, Ccl2, and Ccl3 in inflammatory lesion formation. Finally, follow-up experiments in Cup/EAE mice with chronic disease revealed that forebrain, but not spinal cord, lesions undergo spontaneous reorganization and repair. This study underpins the significance of brain-intrinsic degenerative cascades for immune cell recruitment and, in consequence, MS lesion formation.


Assuntos
Progressão da Doença , Encefalite/etiologia , Encefalite/patologia , Encefalomielite Autoimune Experimental/complicações , Sesquiterpenos/toxicidade , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Encefalite/genética , Encefalomielite Autoimune Experimental/imunologia , Feminino , Adjuvante de Freund/toxicidade , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Microglia/ultraestrutura , Monócitos/patologia , Monócitos/ultraestrutura , Glicoproteína Mielina-Oligodendrócito/imunologia , Glicoproteína Mielina-Oligodendrócito/toxicidade , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/toxicidade , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8A/metabolismo
9.
Cytotherapy ; 19(6): 744-755, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28499585

RESUMO

BACKGROUND AIMS: Myelodysplastic syndromes (MDS) are a group of clonal stem cell disorders affecting the normal hematopoietic differentiation process and leading to abnormal maturation and differentiation of all blood cell lineages. Treatment options are limited, and there is an unmet medical need for effective therapies for patients with severe cytopenias. METHODS: We demonstrate that multipotent adult progenitor cells (MAPC) improve the function of hematopoietic progenitors derived from human MDS bone marrow (BM) by significantly increasing the frequency of primitive progenitors as well as the number of myeloid colonies. RESULTS: This effect was more pronounced in a non-contact culture, indicating the importance of soluble factors produced by the MAPC cells. Moreover, the cells did not stimulate the growth of the abnormal MDS clone, as shown by fluorescent in situ hybridization analysis on BM cells from patients with a known genetic abnormality. We also demonstrate that MAPC cells can provide stromal support for patient-derived hematopoietic cells. When MAPC cells were intravenously injected into a mouse model of MDS, they migrated to the site of injury and increased the hematopoietic function in diseased mice. DISCUSSION: The preclinical studies undertaken here indicate an initial proof of concept for the use of MAPC cell therapy in patients with MDS-related severe and symptomatic cytopenias and should pave the way for further investigation in clinical trials.


Assuntos
Células-Tronco Multipotentes/transplante , Síndromes Mielodisplásicas/terapia , Adulto , Animais , Células da Medula Óssea/citologia , Diferenciação Celular , Feminino , Hematopoese , Humanos , Hibridização in Situ Fluorescente , Camundongos Endogâmicos C57BL
10.
Epilepsia ; 58(6): 1063-1072, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28374921

RESUMO

OBJECTIVES: Neuroinflammation plays a critical role in the pathophysiology of mesial temporal lobe epilepsy. We aimed to evaluate whether intracerebral transplantation of interleukin 13-producing mesenchymal stem cells (IL-13 MSCs) induces an M2 microglia/macrophage activation phenotype in the hippocampus with an epileptogenic insult, thereby providing a neuroprotective environment with reduced epileptogenesis. METHODS: Genetically engineered syngeneic IL-13 MSCs or vehicle was injected within the hippocampus 1 week before the intrahippocampal kainic acid-induced status epilepticus (SE) in C57BL/6J mice. Neuroinflammation was evaluated at disease onset as well as during the chronic epilepsy period (9 weeks). In addition, continuous video-electroencephalography (EEG) (vEEG) monitoring was obtained during the chronic epilepsy period (between 6 and 9 weeks after SE). RESULTS: Evaluation of vEEG recordings suggested that IL-13 MSC grafts did not affect the severity and duration of SE or the seizure burden during the chronic epilepsy period, when compared to the vehicle treated SE mice. An M2-activation phenotype was induced in microglia/macrophages that infiltrated the -13 MSC graft site, as evidenced by the arginase1 expression at the graft site at both the 2-week and 9-week time-points. However, M2-activated immune cells were rarely observed outside the graft site and, accordingly, the neuroinflammatory response or cell loss related to SE induction was not altered by IL-13 MSC grafting. Moreover, an increase in the proportion of F4/80+ cells was observed in the IL-13 MSC group compared to the controls. SIGNIFICANCE: Our data suggest that MSC-based IL-13 delivery to induce M2 glial activation does not provide any neuroprotective or disease-modifying effects in a mouse model of epilepsy. Moreover, use of cell grafting to deliver bioactive compounds for modulating neuroinflammation may have confounding effects in disease pathology of epilepsy due to the additional immune response generated by the grafted cells.


Assuntos
Modelos Animais de Doenças , Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Interleucina-13/farmacologia , Ativação de Macrófagos , Transplante de Células-Tronco Mesenquimais , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Sistemas de Liberação de Medicamentos , Eletrodos Implantados , Eletroencefalografia/efeitos dos fármacos , Engenharia Genética , Injeções , Interleucina-13/genética , Interleucina-13/metabolismo , Masculino , Camundongos Endogâmicos C57BL
11.
Stem Cells Transl Med ; 6(5): 1434-1441, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28244236

RESUMO

Over the last 30 years, numerous allogeneic and xenogeneic cell grafts have been transplanted into the central nervous system (CNS) of mice and men in an attempt to cure neurological diseases. In the early studies, human or porcine embryonic neural cells were grafted in the striatum of animals or patients in an attempt to replace lost neurons. Although the immune-privileged status of the brain as a recipient organ was widely accepted, it rapidly became evident that CNS-grafted allogeneic and xenogeneic cells could be recognized and rejected by the immune system, resulting in poor neural graft survival and limited functional recovery. Since then, the CNS transplantation field has witnessed a sharp rise in the number of studies in which allogeneic and xenogeneic neural or mesenchymal stem cells (NSCs or MSCs, respectively) are transplanted, predominantly aiming at providing trophic stimulation and promoting endogenous repair of the brain. Interestingly, in many recent NSC and MSC-based publications functional improvement was used as the principal measure to evaluate the success of cell transplantation, while the fate of transplanted cells remained largely unreported. In this review, we first attempt to understand why primary neural cell isolates were largely substituted for NSCs and MSCs in cell grafting studies. Next, we review the current knowledge on the immune mechanisms involved in the recognition and rejection of allogeneic and xenogeneic cellular grafts in the CNS. Finally, we propose strategies to reduce graft immunogenicity and to improve graft survival in order to design improved cell-based CNS therapies. Stem Cells Translational Medicine 2017;6:1434-1441.


Assuntos
Imunidade Adaptativa/fisiologia , Sistema Nervoso Central/citologia , Sistema Nervoso Central/imunologia , Imunidade Inata/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Neurais/citologia , Imunidade Adaptativa/imunologia , Animais , Humanos , Imunidade Inata/imunologia , Células-Tronco Mesenquimais/fisiologia , Células-Tronco Neurais/fisiologia
12.
J Tissue Eng Regen Med ; 11(10): 2846-2852, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27320821

RESUMO

Over the past two decades, several cell types with fibroblast-like morphology, including mesenchymal stem/stromal cells, but also other adult, embryonic and extra-embryonic fibroblast-like cells, have been brought forward in the search for cellular therapies to treat severe brain injuries and/or diseases. Although current views in regenerative medicine are highly focused on the immune modulating and regenerative properties of stromal cell transplantation in vivo, many open questions remain regarding their true mode of action. In this perspective, this study integrates insights gathered over the past 10 years to formulate a unifying model of the cellular events that accompany fibroblast-like cell grafting in the rodent brain. Cellular interactions are discussed step-by-step, starting from the day of implantation up to 10 days after transplantation. During the short period that precedes stable settlement of autologous/syngeneic stromal cell grafts, there is a complex interplay between hypoxia-mediated cell death of grafted cells, neutrophil invasion, microglia and macrophage recruitment, astrocyte activation and neo-angiogenesis within the stromal cell graft site. Consequently, it is speculated that regenerative processes following cell therapeutic intervention in the CNS are not only modulated by soluble factors secreted by grafted stromal cells (bystander hypothesis), but also by in vivo inflammatory processes following stromal cell grafting. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Inflamação/patologia , Animais , Humanos , Modelos Biológicos , Células Estromais/citologia , Células Estromais/imunologia , Células Estromais/transplante
13.
Stem Cell Reports ; 7(6): 1099-1115, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27974221

RESUMO

The therapeutic effects of mesenchymal stem cell (MSC) transplantation following spinal cord injury (SCI) to date have been limited. Therefore, we aimed to enhance the immunomodulatory properties of MSCs via continuous secretion of the anti-inflammatory cytokine interleukin-13 (IL-13). By using MSCs as carriers of IL-13 (MSC/IL-13), we investigated their therapeutic potential, compared with non-engineered MSCs, in a mouse model of SCI. We show that transplanted MSC/IL-13 significantly improve functional recovery following SCI, and also decrease lesion size and demyelinated area by more than 40%. Further histological analyses in CX3CR1EGFP/+ CCR2RFP/+ transgenic mice indicated that MSC/IL-13 significantly decrease the number of resident microglia and increase the number of alternatively activated macrophages. In addition, the number of macrophage-axon contacts in MSC/IL-13-treated mice was decreased by 50%, suggesting a reduction in axonal dieback. Our data provide evidence that transplantation of MSC/IL-13 leads to improved functional and histopathological recovery in a mouse model of SCI.


Assuntos
Interleucina-13/administração & dosagem , Ativação de Macrófagos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Animais , Axônios/efeitos dos fármacos , Axônios/patologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Contagem de Células , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/fisiopatologia , Interleucina-13/farmacologia , Interleucina-13/uso terapêutico , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/patologia , Resultado do Tratamento
14.
J Neuroinflammation ; 13(1): 288, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27829467

RESUMO

BACKGROUND: Promoting the neuroprotective and repair-inducing effector functions of microglia and macrophages, by means of M2 polarisation or alternative activation, is expected to become a new therapeutic approach for central nervous system (CNS) disorders in which detrimental pro-inflammatory microglia and/or macrophages display a major contribution to the neuropathology. In this study, we present a novel in vivo approach using intracerebral grafting of mesenchymal stem cells (MSC) genetically engineered to secrete interleukin 13 (IL13-MSC). METHODS: In the first experimental setup, control MSC and IL13-MSC were grafted in the CNS of eGFP+ bone marrow chimaeric C57BL/6 mice to histologically evaluate IL13-mediated expression of several markers associated with alternative activation, including arginase1 and Ym1, on MSC graft-recognising microglia and MSC graft-infiltrating macrophages. In the second experimental setup, IL13-MSC were grafted on the right side (or on both the right and left sides) of the splenium of the corpus callosum in wild-type C57BL/6 mice and in C57BL/6 CX3CR1eGFP/+CCR2RFP/+ transgenic mice. Next, CNS inflammation and demyelination was induced by means of a cuprizone-supplemented diet. The influence of IL13-MSC grafting on neuropathological alterations was monitored by non-invasive T 2-weighted magnetic resonance imaging (MRI) and quantitative histological analyses, as compared to cuprizone-treated mice with control MSC grafts and/or cuprizone-treated mice without MSC injection. RESULTS: In the first part of this study, we demonstrate that MSC graft-associated microglia and MSC graft-infiltrating macrophages are forced into alternative activation upon grafting of IL13-MSC, but not upon grafting of control MSC. In the second part of this study, we demonstrate that grafting of IL13-MSC, in addition to the recruitment of M2 polarised macrophages, limits cuprizone-induced microgliosis, oligodendrocyte death and demyelination. Furthermore, we here demonstrate that injection of IL13-MSC at both sides of the splenium leads to a superior protective effect as compared to a single injection at one side of the splenium. CONCLUSIONS: Controlled and localised production of IL13 by means of intracerebral MSC grafting has the potential to modulate cell graft- and pathology-associated microglial/macrophage responses, and to interfere with oligodendrocyte death and demyelinating events in the cuprizone mouse model.


Assuntos
Cuprizona/toxicidade , Doenças Desmielinizantes , Gliose/etiologia , Interleucina-13/metabolismo , Transplante de Células-Tronco Mesenquimais , Inibidores da Monoaminoxidase/toxicidade , Oligodendroglia/patologia , Animais , Linhagem Celular Transformada , Citocinas/genética , Citocinas/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/cirurgia , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imageamento por Ressonância Magnética , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Básica da Mielina/metabolismo , Oligodendroglia/efeitos dos fármacos
15.
Glia ; 64(12): 2181-2200, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27685637

RESUMO

Detrimental inflammatory responses in the central nervous system are a hallmark of various brain injuries and diseases. With this study we provide evidence that lentiviral vector-mediated expression of the immune-modulating cytokine interleukin 13 (IL-13) induces an alternative activation program in both microglia and macrophages conferring protection against severe oligodendrocyte loss and demyelination in the cuprizone mouse model for multiple sclerosis (MS). First, IL-13 mediated modulation of cuprizone induced lesions was monitored using T2 -weighted magnetic resonance imaging and magnetization transfer imaging, and further correlated with quantitative histological analyses for inflammatory cell influx, oligodendrocyte death, and demyelination. Second, following IL-13 immune gene therapy in cuprizone-treated eGFP+ bone marrow chimeric mice, we provide evidence that IL-13 directs the polarization of both brain-resident microglia and infiltrating macrophages towards an alternatively activated phenotype, thereby promoting the conversion of a pro-inflammatory environment toward an anti-inflammatory environment, as further evidenced by gene expression analyses. Finally, we show that IL-13 immune gene therapy is also able to limit lesion severity in a pre-existing inflammatory environment. In conclusion, these results highlight the potential of IL-13 to modulate microglia/macrophage responses and to improve disease outcome in a mouse model for MS. GLIA 2016;64:2181-2200.


Assuntos
Doenças Desmielinizantes/terapia , Encefalite/terapia , Terapia Genética/métodos , Interleucina-13 , Macrófagos/efeitos dos fármacos , Microglia/efeitos dos fármacos , Animais , Antígenos de Diferenciação/metabolismo , Transplante de Medula Óssea , Cuprizona/toxicidade , Citocinas/genética , Citocinas/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/diagnóstico por imagem , Modelos Animais de Doenças , Encefalite/induzido quimicamente , Encefalite/diagnóstico por imagem , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-13/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibidores da Monoaminoxidase/toxicidade , Proteínas da Mielina/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transdução Genética
16.
Stem Cells ; 34(7): 1971-84, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26992046

RESUMO

Transplantation of mesenchymal stem cells (MSCs) into injured or diseased tissue-for the in situ delivery of a wide variety of MSC-secreted therapeutic proteins-is an emerging approach for the modulation of the clinical course of several diseases and traumata. From an emergency point-of-view, allogeneic MSCs have numerous advantages over patient-specific autologous MSCs since "off-the-shelf" cell preparations could be readily available for instant therapeutic intervention following acute injury. Although we confirmed the in vitro immunomodulatory capacity of allogeneic MSCs on antigen-presenting cells with standard coculture experiments, allogeneic MSC grafts were irrevocably rejected by the host's immune system upon either intramuscular or intracerebral transplantation. In an attempt to modulate MSC allograft rejection in vivo, we transduced MSCs with an interleukin-13 (IL13)-expressing lentiviral vector. Our data clearly indicate that prolonged survival of IL13-expressing allogeneic MSC grafts in muscle tissue coincided with the induction of an alternatively activated macrophage phenotype in vivo and a reduced number of alloantigen-reactive IFNγ- and/or IL2-producing CD8(+) T cells compared to nonmodified allografts. Similarly, intracerebral IL13-expressing MSC allografts also exhibited prolonged survival and induction of an alternatively activated macrophage phenotype, although a peripheral T cell component was absent. In summary, this study demonstrates that both innate and adaptive immune responses are effectively modulated in vivo by locally secreted IL13, ultimately resulting in prolonged MSC allograft survival in both muscle and brain tissue. Stem Cells 2016;34:1971-1984.


Assuntos
Sobrevivência de Enxerto/imunologia , Interleucina-13/farmacologia , Isoantígenos/imunologia , Ativação Linfocitária/efeitos dos fármacos , Macrófagos/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Linfócitos T/imunologia , Aloenxertos/efeitos dos fármacos , Aloenxertos/imunologia , Animais , Formação de Anticorpos/efeitos dos fármacos , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Engenharia Genética , Imunomodulação/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Microglia/efeitos dos fármacos , Microglia/patologia , Linfócitos T/efeitos dos fármacos
17.
Vaccine ; 33(49): 6988-96, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26387432

RESUMO

Vaccination is at present the most efficient way of preventing influenza infections. Currently used inactivated influenza vaccines can induce virus-neutralizing antibodies that are protective against a particular influenza strain, but hamper the induction of cross-protective T-cell responses to later infections. Thus, influenza vaccines need to be updated annually in order to confer protection against circulating influenza strains. This study aims at developing an efficient vaccine that can induce broader protection against influenza. For this purpose, we have used the highly conserved nucleoprotein (NP) from an influenza A virus subtype H7N7 strain, and inserted it into a vaccine format that targets an antigen directly to relevant antigen presenting cells (APCs). The vaccine format consists of bivalent antigenic and targeting units, linked via an Ig-based dimerization unit. In this study, NP was linked to MIP-1α, a chemokine that targets the linked antigen to chemokine receptors 1, 3 and 5 expressed on various APCs. The vaccine protein was indirectly delivered by DNA. Mice were vaccinated intradermally with plasmids, in combination with electroporation to enhance cellular uptake of DNA. We found that a single DNA vaccination was sufficient for induction of both antibody and T cell responses in BALB/c mice. Targeting of nucleoprotein to chemokine receptors enhanced T cell responses but not antibody responses. Moreover, a single dose of MIP1α-NP conferred protection in BALB/c mice against a lethal challenge with an H1N1 influenza virus. The observed cross-protection was mediated by CD8(+) T cells.


Assuntos
Proteção Cruzada , Vacinas contra Influenza/imunologia , Nucleoproteínas/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Receptores de Quimiocinas/imunologia , Vacinas de DNA/imunologia , Animais , Anticorpos Antivirais/sangue , Formação de Anticorpos , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Quimiocina CCL3/imunologia , Feminino , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H7N7 , Camundongos Endogâmicos BALB C , Testes de Neutralização , Infecções por Orthomyxoviridae/imunologia , Plasmídeos
18.
Cell Transplant ; 24(8): 1481-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25197881

RESUMO

While multiple rodent preclinical studies, and to a lesser extent human clinical trials, claim the feasibility, safety, and potential clinical benefit of cell grafting in the central nervous system (CNS), currently only little convincing knowledge exists regarding the actual fate of the grafted cells and their effect on the surrounding environment (or vice versa). Our preceding studies already indicated that only a minor fraction of the initially grafted cell population survives the grafting process, while the surviving cell population becomes invaded by highly activated microglia/macrophages and surrounded by reactive astrogliosis. In the current study, we further elaborate on early cellular and inflammatory events following syngeneic grafting of eGFP(+) mouse embryonic fibroblasts (mEFs) in the CNS of immunocompetent mice. Based on obtained quantitative histological data, we here propose a detailed mathematically derived working model that sequentially comprises hypoxia-induced apoptosis of grafted mEFs, neutrophil invasion, neoangiogenesis, microglia/macrophage recruitment, astrogliosis, and eventually survival of a limited number of grafted mEFs. Simultaneously, we observed that the cellular events following mEF grafting activates the subventricular zone neural stem and progenitor cell compartment. This proposed model therefore further contributes to our understanding of cell graft-induced cellular responses and will eventually allow for successful manipulation of this intervention.


Assuntos
Sistema Nervoso Central/metabolismo , Inflamação , Ventrículos Laterais/citologia , Neutrófilos/imunologia , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Sistema Nervoso Central/imunologia , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/transplante , Genes Reporter , Sobrevivência de Enxerto , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipóxia , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Modelos Biológicos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neutrófilos/citologia
19.
Cell Transplant ; 24(2): 223-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24380384

RESUMO

Although intracerebral transplantation of various fibroblast(-like) cell populations has been shown feasible, little is known about the actual in vivo remodeling of these cellular grafts and their environment. In this study, we aimed to compare the in vitro and in vivo behavior of two phenotypically similar-but developmentally distinct-fibroblast-like cell populations, namely, mouse embryonic fibroblasts (mEFs) and mouse fetal membrane-derived stromal cells (mFMSCs). While both mEFs and mFMSCs are readily able to reduce TNF-α secretion by LPS/IFN-γ-activated BV-2 microglia, mFMSCs and mEFs display strikingly opposite behavior with regard to VEGF production under normal and inflammatory conditions. Whereas mFMSCs downregulate VEGF production upon coculture with LPS/IFN-γ-activated BV-2 microglia, mEFs upregulate VEGF production in the presence of LPS/IFN-γ-activated BV-2 microglia. Subsequently, in vivo grafting of mFMSCs and mEFs revealed no difference in microglial and astroglial responses toward the cellular grafts. However, mFMSC grafts displayed a lower degree of neoangiogenesis compared to mEF grafts, thereby potentially explaining the lower cell number able to survive in mFMSC grafts. In summary, our results suggest that physiological differences between fibroblast-like cell populations might lie at the basis of variations in histopathological and/or clinical outcome following cell grafting in mouse brain.


Assuntos
Encéfalo/patologia , Embrião de Mamíferos/citologia , Membranas Extraembrionárias/citologia , Fibroblastos/transplante , Células Estromais/transplante , Animais , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Imunofenotipagem , Interferon gama/farmacologia , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo , Transplante Homólogo , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Methods Mol Biol ; 1213: 265-83, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25173390

RESUMO

Preclinical animal studies involving intracerebral (stem) cell grafting are gaining popularity in many laboratories due to the reported beneficial effects of cell grafting on various diseases or traumata of the central nervous system (CNS). In this chapter, we describe a histological workflow to characterize and quantify cellular events following neural and fibroblast(-like) stem cell grafting in healthy and demyelinated CNS tissue. First, we provide standardized protocols to isolate and culture eGFP(+) neural and fibroblast(-like) stem cells from embryonic mouse tissue. Second, we describe flow cytometric procedures to determine cell viability, eGFP transgene expression, and the expression of different stem cell lineage markers. Third, we explain how to induce reproducible demyelination in the CNS of mice by means of cuprizone administration, a validated mouse model for human multiple sclerosis. Fourth, the technical procedures for cell grafting in the CNS are explained in detail. Finally, an optimized and validated workflow for the quantitative histological analysis of cell graft survival and endogenous astroglial and microglial responses is provided.


Assuntos
Doenças Desmielinizantes/terapia , Células-Tronco Neurais/citologia , Transplante de Células-Tronco , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos , Modelos Animais de Doenças , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Citometria de Fluxo , Expressão Gênica , Genes Reporter , Sobrevivência de Enxerto , Imuno-Histoquímica , Camundongos , Células-Tronco Neurais/metabolismo , Medicina Regenerativa , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA