Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Immunopathol Pharmacol ; 38: 3946320241250286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38764158

RESUMO

Background: Aluminum phosphide (AlP) poisoning is prevalent in numerous countries, resulting in high mortality rates. Phosphine gas, the primary agent responsible for AlP poisoning, exerts detrimental effects on various organs, notably the heart, liver and kidneys. Numerous studies have documented the advantageous impact of Coenzyme Q10 (CoQ10) in mitigating hepatic injuries. The objective of this investigation is to explore the potential protective efficacy of CoQ10 against hepatic toxicity arising from AlP poisoning. Method: The study encompassed distinct groups receiving almond oil, normal saline, exclusive CoQ10 (at a dosage of 100 mg/kg), AlP at 12 mg/kg; LD50 (lethal dose for 50%), and four groups subjected to AlP along with CoQ10 administration (post-AlP gavage). CoQ10 was administered at 10, 50, and 100 mg/kg doses via Intraparietal (ip) injections. After 24 h, liver tissue specimens were scrutinized for mitochondrial complex activities, oxidative stress parameters, and apoptosis as well as biomarkers such as aspartate transaminase (AST) and alanine transaminase (ALT). Results: AlP induced a significant decrease in the activity of mitochondrial complexes I and IV, as well as a reduction in catalase activity, Ferric Reducing Antioxidant Power (FRAP), and Thiol levels. Additionally, AlP significantly elevated oxidative stress levels, indicated by elevated reactive oxygen species (ROS) production, and resulted in the increment of hepatic biomarkers such as AST and ALT. Administration of CoQ10 led to a substantial improvement in the aforementioned biochemical markers. Furthermore, phosphine exposure resulted in a significant reduction in viable hepatocytes and an increase in apoptosis. Co-treatment with CoQ10 exhibited a dose-dependent reversal of these observed alterations. Conclusion: CoQ10 preserved mitochondrial function, consequently mitigating oxidative damage. This preventive action impeded the progression of heart cells toward apoptosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fígado , Estresse Oxidativo , Fosfinas , Ubiquinona , Fosfinas/intoxicação , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Animais , Estresse Oxidativo/efeitos dos fármacos , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Apoptose/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Ratos , Aspartato Aminotransferases/sangue , Aspartato Aminotransferases/metabolismo , Compostos de Alumínio/toxicidade , Alanina Transaminase/sangue , Alanina Transaminase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ratos Wistar
2.
Front Pharmacol ; 13: 1032941, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278198

RESUMO

Aluminum phosphide (AlP) poisoning can be highly fatal due to its severe toxicity to the heart. Based on the evidence, edaravone (EDA) has protective effects on various pathological conditions of the heart. This research aimed to examine the potential protective effects of EDA on AlP-induced cardiotoxicity in rats. The rats were divided into six groups, including almond oil (control), normal saline, AlP (LD50), and AlP + EDA (20, 30, and 45 mg/kg). Thirty minutes following AlP poisoning, the electrocardiographic (ECG), blood pressure (BP), and heart rate (HR) parameters were examined for 180 min. The EDA was injected 60 min following the AlP poisoning intraperitoneally. Also, 24 h after poisoning, echocardiography was carried out to evaluate the ejection fraction (EF), stroke volume (SV), and cardiac output (CO). The biochemical and molecular parameters, such as the activities of the mitochondrial complexes, reactive oxygen species (ROS), apoptosis and necrosis, and troponin I and lactate levels, were also examined after 12 and 24 h in the heart tissue. According to the results, AlP-induced ECG abnormalities, decrease in blood pressure, heart rate, SV, EF%, and CO were significantly improved with EDA at doses of 30 and 45 mg/kg. Likewise, EDA significantly improved complex I and IV activity, apoptosis and necrosis, ROS, troponin I, and lactate levels following AlP-poisoning (p < 0.05). Also, the mean survival time was increased following EDA treatment, which can be attributed to the EDA's protective effects against diverse underlying mechanisms of phosphine-induced cardiac toxicity. These findings suggest that EDA, by ameliorating heart function and modulating mitochondrial activity, might relieve AlP-induced cardiotoxicity. Nonetheless, additional investigations are required to examine any potential clinical advantages of EDA in this toxicity.

3.
Toxicol Mech Methods ; 32(4): 288-301, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34711111

RESUMO

Aluminum phosphide (AlP) poisoning is common in many countries responsible for high mortality. The heart is the main target organ in AlP poisoning. Several studies have reported the beneficial effects of cannabidiol (CBD) in reducing heart injuries. This study aimed to investigate the possible protective effect of CBD on cardiac toxicity caused by AlP poisoning. Study groups included almond oil, normal saline, sole CBD (100 µg/kg), AlP (11.5 mg/kg), and four groups of AlP + CBD (following AlP gavage, CBD administrated at doses of 5, 25, 50, and 100 µg/kg via intravenous (iv) injection). Thirty minutes after AlP treatment, an electronic cardiovascular device (PowerLab) was used to record electrocardiographic (ECG) changes, heart rate (HR), and blood pressure (BP) for three hours. Cardiac tissue was examined for the activities of mitochondrial complexes, ADP/ATP ratio, the release of cytochrome C, mitochondrial membrane potential (MMP), apoptosis, oxidative stress parameter, and cardiac biomarkers at 12 and 24 hours time points. AlP administration caused abnormal ECG, decreased HR, and BP. AlP also significantly reduced mitochondrial complex I and IV activity and ADP/ATP ratio. The level of cytochrome C release, apoptosis, oxidative stress, and cardiac biomarkers was considerably increased by AlP, which was compensated following CBD administration. CBD was able to improve hemodynamic function to some extent in AlP poisoned rats. CBD restored ATP levels and mitochondrial function and decreased oxidative damage and thus, prevented the heart cells from entering the apoptotic stage. Further clinical trials are needed to explore any possible benefits of CBD in AlP-poisoned patients.


Assuntos
Canabidiol , Fosfinas , Animais , Canabidiol/toxicidade , Eletrocardiografia , Frequência Cardíaca , Humanos , Mitocôndrias , Fosfinas/toxicidade , Ratos , Ratos Wistar
4.
Hum Exp Toxicol ; 40(12_suppl): S381-S396, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34569344

RESUMO

Aluminum phosphide (AlP) poisoning can be deadly in most cases targeting the heart. To overcome AlP toxicity, exenatide has been studied in the present study due to its pleiotropic effects on cardiac damages. In this study, the rats were exposed to LD50 of AlP (10 mg/kg) by gavage, and exenatide at doses (0.05, 0.1, and 0.2 mg/kg) injected intraperitoneally 30 min after poisoning. The cardiac parameters including heart rate (HR), blood pressure (BP), QRS, corrected QT (QTc), and ST were monitored for 180 min. Blood glucose level was measured in the study groups 30 min after exenatide injection. Evaluation of biochemical parameters including mitochondrial complexes I, II, and IV activities, adenosine diphosphate (ADP)/adenosine triphosphate (ATP) ratio, malondialdehyde (MDA), apoptosis, lactate, troponin I, and brain natriuretic peptide (BNP) was done on heart tissues after 12 and 24 h. Additionally, the tissues were analyzed for any pathological damages including necrosis, hemorrhage, or hyperemia 24 h post-treatment. Our results showed that AlP-induced HR, BP, and electrocardiographic changes were improved by exenatide at all doses. The blood glucose levels of poisoned animals reached control levels after exenatide treatment. Besides, treatment with exenatide at all doses improved complexes I and IV activity, ADP/ATP ratio, and apoptosis. Malondialdehyde, lactate, troponin I, and BNP levels were also diminished after exenatide co-treatment in poisoned animals. On the other hand, administration of exenatide doses improved the histopathology of AlP-induced tissues. Based on our findings, exenatide has a protective effect against phosphine-induced cardiotoxicity in an almost dose-dependent way. However, further investigations are needed on the potential clinical use of exenatide in this poisoning.


Assuntos
Compostos de Alumínio/toxicidade , Pressão Sanguínea/efeitos dos fármacos , Eletrocardiografia , Exenatida/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Incretinas/farmacologia , Fosfinas/toxicidade , Animais , Glicemia/efeitos dos fármacos , Relação Dose-Resposta a Droga , Exenatida/administração & dosagem , Dose Letal Mediana , Peroxidação de Lipídeos , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar
5.
Toxicol Mech Methods ; 31(9): 631-643, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34219611

RESUMO

Aluminum phosphide (AlP) causes serious poisoning in which severe cardiac suppression is the significant lethal consequence. According to evidence, levosimendan can exert outstanding cardiac support and protection in different pathological conditions. This study aimed to investigate the mechanisms by which levosimendan may alleviate cardiovascular toxicity due to AlP intoxication in the rat model. The groups included control group (normal saline only), sole levosimendan groups (12, 24, 48 µg/kg), AlP group (10 mg/kg), and AlP + levosimendan groups receiving 12, 24, 48 µg/kg levosimendan intraperitoneally 30 min after AlP administration. Electrocardiographic (ECG) parameters (QRS and PR duration and ST height), heart rate, and blood pressure were monitored for 180 minutes. Also, after 24 h of poisoning, echocardiography was applied to assess left ventricle function. Evaluation of the biochemical parameters in heart tissue, including mitochondrial complexes I, II, IV activity, ADP/ATP ratio, the rate of apoptosis, malondialdehyde (MDA), lactate, and troponin I levels, were done after 12 and 24 h. AlP-induced ECG abnormalities (PR duration and ST height), reduction in heart rate, blood pressure, cardiac output, ejection fraction, and stroke volume were improved by levosimendan administration. Besides, levosimendan significantly improved complex IV activity, the ADP/ATP ratio, apoptosis, MDA, lactate, and troponin I level following AlP-poisoning. Our results suggest that levosimendan might alleviate AlP-induced cardiotoxicity by modulating mitochondrial activity and improving cardiac function. However, the potential clinical use of levosimendan in this toxicity needs more investigations.


Assuntos
Ecocardiografia , Eletrocardiografia , Animais , Fosfinas , Ratos , Ratos Wistar , Simendana
6.
Food Chem Toxicol ; 154: 112347, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34139304

RESUMO

BACKGROUND: Aluminum phosphide (AlP) causes severe cardiotoxicity. Taurine has been chosen for the present study because of its positive known effects on cardiac injuries. METHOD: To evaluate AlP-induced cardiotoxicity, the animals were divided into seven groups, including the control group, the taurine group (500 mg/kg), AlP with LD50 dose, AlP + taurine 20, 50, 100, and 200 mg/kg group. To assess cardiac hemodynamic parameters, Wistar rats received taurine intraperitoneally 60 min after AlP gavage. Cardiac hemodynamic parameters were evaluated for 180 min. To study biochemical parameters, 24 h after AlP treatment, the animals were sacrificed, and heart tissues were collected. RESULT: ECG, BP, and HR abnormalities of AlP poisoning were improved by taurine treatment. AlP induced biochemical alterations including complexes I and IV activities, the ADP/ATP ratio, mitochondrial membrane potential, cytochrome C release, and oxidative stress biomarkers ameliorated by taurine. Moreover, taurine improved apoptosis, as well as lessened CK-MB and troponin I levels. Also, there were no significant changes between taurine 500 mg/kg and the control group in tests. CONCLUSION: The present findings showed that taurine could be a possible candidate for AlP cardiotoxicity treatment via the effect on mitochondrial electron transfer chain and maintaining intracellular ATP balance.


Assuntos
Compostos de Alumínio/toxicidade , Cardiotônicos/uso terapêutico , Cardiotoxicidade/tratamento farmacológico , Fosfinas/toxicidade , Taurina/uso terapêutico , Animais , Pressão Sanguínea/efeitos dos fármacos , Cardiotoxicidade/metabolismo , Creatina Quinase/metabolismo , Eletrocardiografia/efeitos dos fármacos , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Coração/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Miocárdio/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Troponina I/metabolismo
7.
Life Sci ; 265: 118813, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33275984

RESUMO

AIMS: Although chemotherapeutic agents have highly beneficial effects against cancer, they disturb the body's normal homeostasis. One of the critical side effects of chemotherapeutic agents is their deleterious effect on the cardiac system, which causes limitations of their clinical usage. Taurine constitutes more than 50% of the amino acids in the heart. The use of taurine might prevent chemotherapy-induced cardiotoxicity. This systematic study aims to evaluate the protective role of taurine against cardiotoxicity induced by chemotherapy. METHODS: A systematic search was performed in databases up to November 2020, and the review is designed on PRISMA guidelines. The search keywords were selected based on our study target and were searched in the title and abstract. After the consecutive screening, out of a whole of 94 articles, 8 articles were included according to our inclusion and exclusion criteria. KEY FINDINGS: According to the study results, chemotherapy decreases body and heart weight and increases mortality. Also, it induces some biochemical and histological changes compared to the control group. By co-administration of taurine with chemotherapy, alterations returned near to the average level. These protective effects of taurine are mediated through anti-oxidant, anti-inflammatory, and anti-apoptotic properties. SIGNIFICANCE: Based on evaluated non-clinical studies, taurine ameliorates chemotherapy-induced cardiotoxicity, but its possible interaction with the efficacy of anti-cancer medicines that mostly act through induction of oxidants remains to be elucidated in the future. This needs conducting well-designed studies to assess the effectiveness and safety of this combination simultaneously.


Assuntos
Antineoplásicos/efeitos adversos , Cardiotoxicidade/prevenção & controle , Taurina/administração & dosagem , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Antineoplásicos/administração & dosagem , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Cardiotoxicidade/etiologia , Humanos , Neoplasias/tratamento farmacológico , Taurina/farmacologia
8.
Life Sci ; 241: 117173, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31843530

RESUMO

PURPOSE: Doxorubicin, as an effective chemotherapeutic drug, is commonly used for combating various solid and hematological tumors. However, doxorubicin-induced cardiotoxicity is considered as a serious adverse effect, and it limits the clinical use of this chemotherapeutic drug. The use of melatonin can lead to a decrease in the cardiotoxic effect induced by doxorubicin. The aim of this review was to evaluate the potential role of melatonin in the prevention of doxorubicin-induced cardiotoxicity. METHODS: This review was conducted by a full systematic search strategy based on PRISMA guidelines for the identification of relevant literature in the electronic databases of PubMed, Web of Science, Embase, and Scopus up to January 2019 using search terms in the titles and abstracts. 286 articles were screened in accordance with our inclusion and exclusion criteria. Finally, 28 articles were selected in this systematic review. RESULTS: The findings demonstrated that doxorubicin-treated groups had increased mortality, decreased body weight and heart weight, and increased ascites compared to the control groups; the co-administration of melatonin revealed an opposite pattern compared to the doxorubicin-treated groups. Also, this chemotherapeutic agent can lead to biochemical and histopathological changes; as for most of the cases, these alterations were reversed near to normal levels (control groups) by melatonin co-administration. Melatonin exerts these protection effects through mechanisms of anti-oxidant, anti-apoptosis, anti-inflammatory, and mitochondrial function. CONCLUSION: The results of this systematic review indicated that co-administration of melatonin ameliorates the doxorubicin-induced cardiotoxicity.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Antioxidantes/uso terapêutico , Cardiotoxicidade/prevenção & controle , Doxorrubicina/efeitos adversos , Melatonina/uso terapêutico , Neoplasias/tratamento farmacológico , Cardiotoxicidade/etiologia , Humanos , Neoplasias/patologia , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA