Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Arch. cardiol. Méx ; 94(2): 219-239, Apr.-Jun. 2024. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1556919

RESUMO

resumen está disponible en el texto completo


Abstract This consensus of nomenclature and classification for congenital bicuspid aortic valve and its aortopathy is evidence-based and intended for universal use by physicians (both pediatricians and adults), echocardiographers, advanced cardiovascular imaging specialists, interventional cardiologists, cardiovascular surgeons, pathologists, geneticists, and researchers spanning these areas of clinical and basic research. In addition, as long as new key and reference research is available, this international consensus may be subject to change based on evidence-based data1.

2.
Arch Cardiol Mex ; 94(2): 219-239, 2024 02 07.
Artigo em Espanhol | MEDLINE | ID: mdl-38325117

RESUMO

This consensus of nomenclature and classification for congenital bicuspid aortic valve and its aortopathy is evidence-based and intended for universal use by physicians (both pediatricians and adults), echocardiographers, advanced cardiovascular imaging specialists, interventional cardiologists, cardiovascular surgeons, pathologists, geneticists, and researchers spanning these areas of clinical and basic research. In addition, as long as new key and reference research is available, this international consensus may be subject to change based on evidence-based data1.


Este consenso de nomenclatura y clasificación para la válvula aórtica bicúspide congénita y su aortopatía está basado en la evidencia y destinado a ser utilizado universalmente por médicos (tanto pediatras como de adultos), médicos ecocardiografistas, especialistas en imágenes avanzadas cardiovasculares, cardiólogos intervencionistas, cirujanos cardiovasculares, patólogos, genetistas e investigadores que abarcan estas áreas de investigación clínica y básica. Siempre y cuando se disponga de nueva investigación clave y de referencia, este consenso internacional puede estar sujeto a cambios de acuerdo con datos basados en la evidencia1.

3.
Invest Radiol ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37855728

RESUMO

BACKGROUND: Management of asymptomatic abdominal aortic aneurysm (AAA) based on maximum aneurysm diameter and growth rate fails to preempt many ruptures. Assessment of aortic wall biomechanical properties may improve assessment of progression and rupture risk. This study aimed to assess the accuracy of AAA wall strain measured by cine magnetic resonance imaging (MRI) deformable image registration (MR strain) and investigate its relationship with recent AAA progression. METHODS: The MR strain accuracy was evaluated in silico against ground truth strain in 54 synthetic MRIs generated from a finite element model simulation of an AAA patient's abdomen for different aortic pulse pressures, tissue motions, signal intensity variations, and image noise. Evaluation included bias with 95% confidence interval (CI) and correlation analysis. Association of MR strain with AAA growth rate was assessed in 25 consecutive patients with >6 months of prior surveillance, for whom cine balanced steady-state free-precession imaging was acquired at the level of the AAA as well as the proximal, normal-caliber aorta. Univariate and multivariate regressions were used to associate growth rate with clinical variables, maximum AAA diameter (Dmax), and peak circumferential MR strain through the cardiac cycle. The MR strain interoperator variability was assessed using bias with 95% CI, intraclass correlation coefficient, and coefficient of variation. RESULTS: In silico experiments revealed an MR strain bias of 0.48% ± 0.42% and a slope of correlation to ground truth strain of 0.963. In vivo, AAA MR strain (1.2% ± 0.6%) was highly reproducible (bias ± 95% CI, 0.03% ± 0.31%; intraclass correlation coefficient, 97.8%; coefficient of variation, 7.14%) and was lower than in the nonaneurysmal aorta (2.4% ± 1.7%). Dmax (ß = 0.087) and MR strain (ß= -1.563) were both associated with AAA growth rate. The MR strain remained an independent factor associated with growth rate (ß= -0.904) after controlling for Dmax. CONCLUSIONS: Deformable image registration analysis can accurately measure the circumferential strain of the AAA wall from standard cine MRI and may offer patient-specific insight regarding AAA progression.

4.
J Cardiovasc Magn Reson ; 25(1): 40, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474977

RESUMO

Hemodynamic assessment is an integral part of the diagnosis and management of cardiovascular disease. Four-dimensional cardiovascular magnetic resonance flow imaging (4D Flow CMR) allows comprehensive and accurate assessment of flow in a single acquisition. This consensus paper is an update from the 2015 '4D Flow CMR Consensus Statement'. We elaborate on 4D Flow CMR sequence options and imaging considerations. The document aims to assist centers starting out with 4D Flow CMR of the heart and great vessels with advice on acquisition parameters, post-processing workflows and integration into clinical practice. Furthermore, we define minimum quality assurance and validation standards for clinical centers. We also address the challenges faced in quality assurance and validation in the research setting. We also include a checklist for recommended publication standards, specifically for 4D Flow CMR. Finally, we discuss the current limitations and the future of 4D Flow CMR. This updated consensus paper will further facilitate widespread adoption of 4D Flow CMR in the clinical workflow across the globe and aid consistently high-quality publication standards.


Assuntos
Sistema Cardiovascular , Humanos , Velocidade do Fluxo Sanguíneo , Valor Preditivo dos Testes , Coração , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
5.
Eur J Cardiothorac Surg ; 63(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37354525

RESUMO

OBJECTIVES: Rapid diameter growth is a criterion for ascending thoracic aortic aneurysm repair; however, there are sparse data on aneurysm elongation rate. The purpose of this study was to assess aortic elongation rates in nonsyndromic, nonsurgical aneurysms to understand length dynamics and correlate with aortic diameter over time. METHODS: Patients with <5.5-cm aneurysms and computed tomography angiography imaging at baseline and 3-5 years follow-up underwent patient-specific three-dimensional aneurysm reconstruction using MeVisLab. Aortic length was measured along the vessel centreline between the annulus and aortic arch. Maximum aneurysm diameter was determined from imaging in a plane normal to the vessel centreline. Average rates of aneurysm growth were evaluated using the longest available follow-up. RESULTS: Over the follow-up period, the mean aortic length for 67 identified patients increased from 118.2 (95% confidence interval: 115.4-121.1) mm to 120.2 (117.3-123.0) mm (P = 0.02) and 15 patients (22%) experienced a change in length of ≥5% from baseline. The mean annual growth rate for length [0.38 (95% confidence interval: 0.11-0.65) mm/year] was correlated with annual growth rate for diameter [0.1 (0.03-0.2) mm/year] (rho = 0.30, P = 0.01). Additionally, annual percentage change in length [0.3 (0.1-0.5)%/year] was similar to percentage change in diameter [0.2 (0.007-0.4)%/year, P = 0.95]. CONCLUSIONS: Aortic length increases in parallel with aortic diameter at a similar percentage rate. Further work is needed to identify whether elongation rate is associated with dissection risk. Such studies may provide insight into why patients with aortic diameters smaller than surgical guidelines continue to experience dissection events.


Assuntos
Aneurisma da Aorta Torácica , Humanos , Dilatação , Aneurisma da Aorta Torácica/cirurgia , Aorta Torácica/diagnóstico por imagem , Aorta , Tomografia Computadorizada por Raios X , Dilatação Patológica/diagnóstico por imagem , Estudos Retrospectivos , Fatores de Risco , Aortografia/métodos
6.
J Magn Reson Imaging ; 58(4): 1258-1267, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36747321

RESUMO

BACKGROUND: Abdominal aortic aneurysms (AAAs) may rupture before reaching maximum diameter (Dmax ) thresholds for repair. Aortic wall microvasculature has been associated with elastin content and rupture sites in specimens, but its relation to progression is unknown. PURPOSE: To investigate whether dynamic contrast-enhanced (DCE) MRI of AAA is associated with Dmax or growth. STUDY TYPE: Prospective. POPULATION: A total of 27 male patients with infrarenal AAA (mean age ± standard deviation = 75 ± 5 years) under surveillance with DCE MRI and 2 years of prior follow-up intervals with computed tomography (CT) or MRI. FIELD STRENGTH/SEQUENCE: A 3-T, dynamic three-dimensional (3D) fast gradient-echo stack-of-stars volumetric interpolated breath-hold examination (Star-VIBE). ASSESSMENT: Wall voxels were manually segmented in two consecutive slices at the level of Dmax . We measured slope to 1-minute and area under the curve (AUC) to 1 minute and 4 minutes of the signal intensity change postcontrast relative to that precontrast arrival, and, Ktrans , a measure of microvascular permeability, using the Patlak model. These were averaged over all wall voxels for association to Dmax and growth rate, and, over left/right and anterior/posterior quadrants for testing circumferential homogeneity. Dmax was measured orthogonal to the aortic centerline and growth rate was calculated by linear fit of Dmax measurements. STATISTICAL TESTS: Pearson correlation and linear mixed effects models. A P value <0.05 was considered statistically significant. RESULTS: In 44 DCE MRIs, mean Dmax was 45 ± 7 mm and growth rate in 1.5 ± 0.4 years of prior follow-up was 1.7 ± 1.2 mm per year. DCE measurements correlated with each other (Pearson r = 0.39-0.99) and significantly differed between anterior/posterior versus left/right quadrants. DCE measurements were not significantly associated with Dmax (P = 0.084, 0.289, 0.054 and 0.255 for slope, AUC at 1 minute and 4 minutes, and Ktrans , respectively). Slope and 4 minutes AUC significantly associated with growth rate after controlling for Dmax . CONCLUSION: Contrast uptake may be increased in lateral aspects of the AAA. Contrast enhancement 1-minute slope and 4-minutes AUC may be associated with a period of recent AAA growth that is independent of Dmax . EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 2.


Assuntos
Aneurisma da Aorta Abdominal , Humanos , Masculino , Estudos Prospectivos , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/complicações , Aorta , Progressão da Doença , Imageamento por Ressonância Magnética/métodos
8.
Semin Thorac Cardiovasc Surg ; 35(3): 447-456, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35690227

RESUMO

Risk of aortic dissection in ascending thoracic aortic aneurysms is not sufficiently captured by size-based metrics. From a biomechanical perspective, dissection may be initiated when wall stress exceeds wall strength. Our objective was to assess the association between aneurysm peak wall stresses and 3-year all-cause mortality. Finite element analysis was performed in 273 veterans with chest computed tomography for surveillance of ascending thoracic aortic aneurysms. Three-dimensional geometries were reconstructed and models developed accounting for prestress geometries. A fiber-embedded hyperelastic material model was applied to obtain circumferential and longitudinal wall stresses under systolic pressure. Patients were followed up to 3 years following the scan to assess aneurysm repair and all-cause mortality. Fine-Gray subdistribution hazards were estimated for all-cause mortality based on age, aortic diameter, and peak wall stresses, treating aneurysm repair as a competing risk. When accounting for age, subdistribution hazard of mortality was not significantly increased by peak circumferential stresses (p = 0.30) but was significantly increased by peak longitudinal stresses (p = 0.008). Aortic diameter did not significantly increase subdistribution hazard of mortality in either model (circumferential model: p = 0.38; longitudinal model: p = 0.30). The effect of peak longitudinal stresses on subdistribution hazard of mortality was maximized at a binary threshold of 355kPa, which captured 34 of 212(16%) patients with diameter <5 cm, 11 of 36(31%) at 5.0-5.4 cm, and 11 of 25(44%) at ≥5.5 cm. Aneurysm peak longitudinal stresses stratified by age and diameter were associated with increased hazard of 3-year all-cause mortality in a veteran cohort. Risk prediction may be enhanced by considering peak longitudinal stresses.

9.
Ann Cardiothorac Surg ; 11(4): 468-469, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35958535
11.
J Am Heart Assoc ; 11(7): e024571, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35348001

RESUMO

Background Abdominal aortic aneurysm (AAA) screening programs have been active in the United States since 2005, but are not the only way AAAs are detected. AAA management and outcomes have not been investigated broadly in the context of "implicit AAA screening," whereby radiologic examinations not intended for focused screening can identify AAAs. Methods and Results We examined the association between imaging-based AAA screening, both explicit and implicit, and various outcomes for ≈1.6 million veterans in the Veterans Affairs health care system from 2005 to 2015. Screened-positive, screened-negative, and unscreened veterans were identified in the overall cohort and within a subgroup of veterans aged 65 years in 2005. The yearly composite screening rate increased over 10 years, from 11.7% to 18.3%, whereas the screened-positive rate decreased from 7.3% to 4.9%. Only 12.9% of screening examinations were explicit AAA screening ultrasounds. The subgroup's composite screening rate was 74% within its 10-year eligibility window, with implicit screening accounting for 91.8% of examinations. In the 2005 subgroup, all-cause mortality and Charlson comorbidity scores were higher for veterans who underwent screening compared with those unscreened (31.2% versus 23.1% and 0.47 versus 0.25, respectively; P<0.001). AAA rupture rates were similar between those unscreened and screened-negative individuals. Conclusions Accounting for both explicit and implicit screening, AAA screening in the Veterans Affairs population has moderate reach. Efforts to expand explicit AAA screening are not likely to impact either all-cause mortality or AAA rupture on the population scale as significantly as a careful accounting for and use of implicit screening data.


Assuntos
Aneurisma da Aorta Abdominal , Veteranos , Idoso , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/epidemiologia , Atenção à Saúde , Humanos , Programas de Rastreamento/métodos , Fatores de Risco , Ultrassonografia , Estados Unidos/epidemiologia
12.
Quant Imaging Med Surg ; 12(1): 333-340, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34993082

RESUMO

BACKGROUND: Historic studies of nonsyndromic ascending thoracic aortic aneurysms (aTAAs) reported that the typical aTAA growth rate was approximately 0.6 mm/year, but data were limited due to relatively few studies using computed tomography (CT) imaging. Our purpose was to reevaluate the annual growth rate of nonsyndromic aTAAs that do not meet criteria for surgical repair in veterans in the contemporary era, using modern CT imaging suitable for highly accurate and reproducible aneurysm measurement. METHODS: Nonsurgical patients (diameter <5.5 cm) undergoing aneurysm surveillance at a Veterans Affairs Medical Center with repeat CT imaging performed 3 to 5 years apart were identified. Maximum diameter was determined by a single radiologist using multiplanar reformat-based measurements. Average rate of aneurysm growth was evaluated based on longest available follow-up. RESULTS: Sixty-seven patients were included. Average follow-up time was 4.06±0.83 years. Patients were exclusively male, with average age of 68.1±6.0 years, and the majority had a history of smoking (n=52, 78%), hypertension (n=52, 78%), and dyslipidemia (n=48, 72%). Average baseline aneurysm diameter was 44.0±3.2 mm and average growth rate was 0.11±0.31 mm/year, with no difference in growth rate between patients with initial diameter ≤45 vs. >45 mm. Only 3 patients experienced clinically significant changes in diameter with magnitude greater than 5% of baseline. CONCLUSIONS: In this veteran population, most patients did not experience significant annual aneurysm growth over up to 5 years of follow-up, regardless of initial diameter. Thus, in the modern era, aTAAs may not grow as quickly as previously described, which will be important in determining appropriate intervals for aneurysm surveillance based upon risk-benefit ratio.

13.
J Thorac Cardiovasc Surg ; 164(5): 1365-1375, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34275618

RESUMO

OBJECTIVE: Ascending thoracic aortic aneurysms carry a risk of acute type A dissection. Elective repair guidelines are designed around size thresholds, but the 1-dimensional parameter of maximum diameter cannot predict acute events in small aneurysms. Biomechanically, dissection can occur when wall stress exceeds strength. Patient-specific ascending thoracic aortic aneurysm wall stresses may be a better predictor of dissection. Our aim was to compare wall stresses in tricuspid aortic valve-associated ascending thoracic aortic aneurysms based on diameter. METHODS: Patients with tricuspid aortic valve-associated ascending thoracic aortic aneurysm and diameter 4.0 cm or greater (n = 221) were divided into groups by 0.5-cm diameter increments. Three-dimensional geometries were reconstructed from computed tomography images, and finite element models were developed taking into account prestress geometries. A fiber-embedded hyperelastic material model was applied to obtain longitudinal and circumferential wall stress distributions under systolic pressure. Median stresses with interquartile ranges were determined. The Kruskal-Wallis test was used for comparisons between size groups. RESULTS: Peak longitudinal wall stresses for tricuspid aortic valve-associated ascending thoracic aortic aneurysm were 290 (265-323) kPa for size 4.0 to 4.4 cm versus 330 (296-359) kPa for 4.5 to 4.9 cm versus 339 (320-373) kPa for 5.0 to 5.4 cm versus 318 (293-351) kPa for 5.5 to 5.9 cm versus 373 (363-449) kPa for 6.0 cm or greater (P = 8.7e-8). Peak circumferential wall stresses were 460 (421-543) kPa for size 4.0 to 4.4 cm versus 503 (453-569) kPa for 4.5 to 4.9 cm versus 549 (430-588) kPa for 5.0 to 5.4 cm versus 540 (471-608) kPa for 5.5 to 5.9 cm versus 596 (506-649) kPa for 6.0 cm or greater (P = .0007). CONCLUSIONS: Circumferential and longitudinal wall stresses are higher as diameter increases, but size groups had large overlap of stress ranges. Wall stress thresholds based on aneurysm wall strength may be a better predictor of patient-specific risk of dissection than diameter in small ascending thoracic aortic aneurysms.


Assuntos
Aneurisma da Aorta Torácica , Aorta , Aneurisma da Aorta Torácica/diagnóstico por imagem , Aneurisma da Aorta Torácica/etiologia , Aneurisma da Aorta Torácica/cirurgia , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/cirurgia , Humanos , Valva Tricúspide/diagnóstico por imagem
14.
Interact Cardiovasc Thorac Surg ; 34(6): 1115-1123, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718581

RESUMO

OBJECTIVES: Ascending thoracic aortic aneurysms (aTAAs) carry a risk of acute type A dissection. Elective repair guidelines are based on diameter, but complications often occur below diameter threshold. Biomechanically, dissection can occur when wall stress exceeds wall strength. Aneurysm wall stresses may better capture dissection risk. Our aim was to investigate patient-specific aTAA wall stresses associated with a tricuspid aortic valve (TAV) by anatomic region. METHODS: Patients with aneurysm diameter ≥4.0 cm underwent computed tomography angiography. Aneurysm geometries were reconstructed and loaded to systemic pressure while taking prestress into account. Finite element analyses were conducted to obtain wall stress distributions. The 99th percentile longitudinal and circumferential stresses were determined at systole. Wall stresses between regions were compared using one-way analysis of variance with post hoc Tukey HSD for pairwise comparisons. RESULTS: Peak longitudinal wall stresses on aneurysms (n = 204) were 326 [standard deviation (SD): 61.7], 246 (SD: 63.4) and 195 (SD: 38.7) kPa in sinuses of Valsalva, sinotubular junction (STJ) and ascending aorta (AscAo), respectively, with significant differences between AscAo and both sinuses (P < 0.001) and STJ (P < 0.001). Peak circumferential wall stresses were 416 (SD: 85.1), 501 (SD: 119) and 340 (SD: 57.6) kPa for sinuses, STJ and AscAo, respectively, with significant differences between AscAo and both sinuses (P < 0.001) and STJ (P < 0.001). CONCLUSIONS: Circumferential and longitudinal wall stresses were greater in the aortic root than AscAo on aneurysm patients with a TAV. Aneurysm wall stress magnitudes and distribution relative to respective regional wall strength could improve understanding of aortic regions at greater risk of dissection in a particular patient.


Assuntos
Aneurisma da Aorta Torácica , Aneurisma Aórtico , Aorta , Aneurisma Aórtico/complicações , Aneurisma Aórtico/etiologia , Aneurisma da Aorta Torácica/diagnóstico por imagem , Aneurisma da Aorta Torácica/etiologia , Valva Aórtica/diagnóstico por imagem , Humanos , Estresse Mecânico , Valva Tricúspide/diagnóstico por imagem
15.
Radiol Cardiothorac Imaging ; 3(4): e200496, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34505060

RESUMO

This International Consensus Classification and Nomenclature for the congenital bicuspid aortic valve condition recognizes 3 types of bicuspid valves: 1. The fused type (right-left cusp fusion, right-non-coronary cusp fusion and left-non-coronary cusp fusion phenotypes); 2. The 2-sinus type (latero-lateral and antero-posterior phenotypes); and 3. The partial-fusion (forme fruste) type. The presence of raphe and the symmetry of the fused type phenotypes are critical aspects to describe. The International Consensus also recognizes 3 types of bicuspid valve-associated aortopathy: 1. The ascending phenotype; 2. The root phenotype; and 3. Extended phenotypes. © 2021 Jointly between the RSNA, the European Association for Cardio-Thoracic Surgery, The Society of Thoracic Surgeons, and the American Association for Thoracic Surgery. The articles are identical except for minor stylistic and spelling differences in keeping with each journal's style. All rights reserved. Keywords: Bicuspid Aortic Valve, Aortopathy, Nomenclature, Classification.

16.
Eur J Cardiothorac Surg ; 60(3): 481-496, 2021 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-34292332

RESUMO

This International evidence-based nomenclature and classification consensus on the congenital bicuspid aortic valve and its aortopathy recognizes 3 types of bicuspid aortic valve: 1. Fused type, with 3 phenotypes: right-left cusp fusion, right-non cusp fusion and left-non cusp fusion; 2. 2-sinus type with 2 phenotypes: Latero-lateral and antero-posterior; and 3. Partial-fusion or forme fruste. This consensus recognizes 3 bicuspid-aortopathy types: 1. Ascending phenotype; root phenotype; and 3. extended phenotypes.


Assuntos
Estenose da Valva Aórtica , Doença da Válvula Aórtica Bicúspide , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/cirurgia , Consenso , Humanos , Fenótipo
17.
Eur J Cardiothorac Surg ; 60(3): 448-476, 2021 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-34293102

RESUMO

This International Consensus Classification and Nomenclature for the congenital bicuspid aortic valve condition recognizes 3 types of bicuspid valves: 1. The fused type (right-left cusp fusion, right-non-coronary cusp fusion and left-non-coronary cusp fusion phenotypes); 2. The 2-sinus type (latero-lateral and antero-posterior phenotypes); and 3. The partial-fusion (forme fruste) type. The presence of raphe and the symmetry of the fused type phenotypes are critical aspects to describe. The International Consensus also recognizes 3 types of bicuspid valve-associated aortopathy: 1. The ascending phenotype; 2. The root phenotype; and 3. Extended phenotypes.


Assuntos
Estenose da Valva Aórtica , Doença da Válvula Aórtica Bicúspide , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/cirurgia , Consenso , Humanos , Fenótipo
18.
Ann Thorac Surg ; 112(3): 1005-1022, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34304861

RESUMO

This International evidence-based nomenclature and classification consensus on the congenital bicuspid aortic valve and its aortopathy recognizes 3 types of bicuspid aortic valve: 1. Fused type, with 3 phenotypes: right-left cusp fusion, right-non cusp fusion and left-non cusp fusion; 2. 2-sinus type with 2 phenotypes: Latero-lateral and antero-posterior; and 3. Partial-fusion or forme fruste. This consensus recognizes 3 bicuspid-aortopathy types: 1. Ascending phenotype; root phenotype; and 3. extended phenotypes.


Assuntos
Doença da Válvula Aórtica Bicúspide/classificação , Doença da Válvula Aórtica Bicúspide/cirurgia , Pesquisa Biomédica , Humanos , Systematized Nomenclature of Medicine
19.
Ann Thorac Surg ; 112(3): e203-e235, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34304860

RESUMO

This International Consensus Classification and Nomenclature for the congenital bicuspid aortic valve condition recognizes 3 types of bicuspid valves: 1. The fused type (right-left cusp fusion, right-non-coronary cusp fusion and left-non-coronary cusp fusion phenotypes); 2. The 2-sinus type (latero-lateral and antero-posterior phenotypes); and 3. The partial-fusion (forme fruste) type. The presence of raphe and the symmetry of the fused type phenotypes are critical aspects to describe. The International Consensus also recognizes 3 types of bicuspid valve-associated aortopathy: 1. The ascending phenotype; 2. The root phenotype; and 3. Extended phenotypes.


Assuntos
Doença da Válvula Aórtica Bicúspide/classificação , Doença da Válvula Aórtica Bicúspide/genética , Humanos , Fenótipo , Systematized Nomenclature of Medicine
20.
J Thorac Cardiovasc Surg ; 162(3): 781-797, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34304894

RESUMO

This International evidence-based nomenclature and classification consensus on the congenital bicuspid aortic valve and its aortopathy recognizes 3 types of bicuspid aortic valve: 1. Fused type, with 3 phenotypes: right-left cusp fusion, right-non cusp fusion and left-non cusp fusion; 2. 2-sinus type with 2 phenotypes: Latero-lateral and antero-posterior; and 3. Partial-fusion or forme fruste. This consensus recognizes 3 bicuspid-aortopathy types: 1. Ascending phenotype; root phenotype; and 3. extended phenotypes.


Assuntos
Aorta , Doenças da Aorta/classificação , Valva Aórtica/anormalidades , Doença da Válvula Aórtica Bicúspide/classificação , Terminologia como Assunto , Aorta/diagnóstico por imagem , Aorta/cirurgia , Doenças da Aorta/diagnóstico por imagem , Doenças da Aorta/cirurgia , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/cirurgia , Aortografia , Doença da Válvula Aórtica Bicúspide/diagnóstico por imagem , Doença da Válvula Aórtica Bicúspide/cirurgia , Técnicas de Imagem Cardíaca , Consenso , Humanos , Fenótipo , Valor Preditivo dos Testes , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA