Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
3.
Nat Biotechnol ; 38(4): 482-492, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32265562

RESUMO

The range of the mosquito Aedes aegypti continues to expand, putting more than two billion people at risk of arboviral infection. The sterile insect technique (SIT) has been used to successfully combat agricultural pests at large scale, but not mosquitoes, mainly because of challenges with consistent production and distribution of high-quality male mosquitoes. We describe automated processes to rear and release millions of competitive, sterile male Wolbachia-infected mosquitoes, and use of these males in a large-scale suppression trial in Fresno County, California. In 2018, we released 14.4 million males across three replicate neighborhoods encompassing 293 hectares. At peak mosquito season, the number of female mosquitoes was 95.5% lower (95% CI, 93.6-96.9) in release areas compared to non-release areas, with the most geographically isolated neighborhood reaching a 99% reduction. This work demonstrates the high efficacy of mosquito SIT in an area ninefold larger than in previous similar trials, supporting the potential of this approach in public health and nuisance-mosquito eradication programs.


Assuntos
Aedes/microbiologia , Aedes/fisiologia , Controle de Mosquitos/métodos , Mosquitos Vetores/microbiologia , Mosquitos Vetores/fisiologia , Wolbachia/fisiologia , Aedes/crescimento & desenvolvimento , Migração Animal , Animais , California , Feminino , Larva/crescimento & desenvolvimento , Larva/microbiologia , Larva/fisiologia , Masculino , Controle de Mosquitos/estatística & dados numéricos , Mosquitos Vetores/crescimento & desenvolvimento , Dinâmica Populacional , Caracteres Sexuais
4.
Genes Dev ; 30(14): 1658-70, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27474443

RESUMO

RNA degradation is tightly regulated to selectively target aberrant RNAs, including viral RNA, but this regulation is incompletely understood. Through RNAi screening in Drosophila cells, we identified the 3'-to-5' RNA exosome and two components of the exosome cofactor TRAMP (Trf4/5-Air1/2-Mtr4 polyadenylation) complex, dMtr4 and dZcchc7, as antiviral against a panel of RNA viruses. We extended our studies to human orthologs and found that the exosome as well as TRAMP components hMTR4 and hZCCHC7 are antiviral. While hMTR4 and hZCCHC7 are normally nuclear, infection by cytoplasmic RNA viruses induces their export, forming a cytoplasmic complex that specifically recognizes and induces degradation of viral mRNAs. Furthermore, the 3' untranslated region (UTR) of bunyaviral mRNA is sufficient to confer virus-induced exosomal degradation. Altogether, our results reveal that signals from viral infection repurpose TRAMP components to a cytoplasmic surveillance role where they selectively engage viral RNAs for degradation to restrict a broad range of viruses.


Assuntos
Exossomos/metabolismo , Estabilidade de RNA/fisiologia , RNA Viral/metabolismo , Animais , Linhagem Celular , Citoplasma/metabolismo , Drosophila/virologia , Humanos , Complexos Multiproteicos/genética , Poliadenilação , Ligação Proteica , Transporte Proteico , Interferência de RNA , Infecções por Vírus de RNA/metabolismo , Infecções por Vírus de RNA/virologia , Vírus de RNA/fisiologia , Fatores de Transcrição/metabolismo
5.
Sci Transl Med ; 7(304): 304ra141, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26355030

RESUMO

The four dengue virus serotypes (DENV1 to DENV4) are mosquito-borne flaviviruses that cause up to ~100 million cases of dengue annually worldwide. Severe disease is thought to result from immunopathogenic processes involving serotype cross-reactive antibodies and T cells that together induce vasoactive cytokines, causing vascular leakage that leads to shock. However, no viral proteins have been directly implicated in triggering endothelial permeability, which results in vascular leakage. DENV nonstructural protein 1 (NS1) is secreted and circulates in patients' blood during acute infection; high levels of NS1 are associated with severe disease. We show that inoculation of mice with DENV NS1 alone induces both vascular leakage and production of key inflammatory cytokines. Furthermore, simultaneous administration of NS1 with a sublethal dose of DENV2 results in a lethal vascular leak syndrome. We also demonstrate that NS1 from DENV1, DENV2, DENV3, and DENV4 triggers endothelial barrier dysfunction, causing increased permeability of human endothelial cell monolayers in vitro. These pathogenic effects of physiologically relevant amounts of NS1 in vivo and in vitro were blocked by NS1-immune polyclonal mouse serum or monoclonal antibodies to NS1, and immunization of mice with NS1 from DENV1 to DENV4 protected against lethal DENV2 challenge. These findings add an important and previously overlooked component to the causes of dengue vascular leak, identify a new potential target for dengue therapeutics, and support inclusion of NS1 in dengue vaccines.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Vírus da Dengue/metabolismo , Células Endoteliais/patologia , Vacinação , Proteínas não Estruturais Virais/imunologia , Animais , Anticorpos Monoclonais/imunologia , Citocinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Células HEK293 , Humanos , Soros Imunes , Mediadores da Inflamação/metabolismo , Pulmão/citologia , Camundongos Endogâmicos C57BL , Síndrome
6.
Proc Natl Acad Sci U S A ; 112(22): E2920-9, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26038567

RESUMO

The mosquito-transmitted bunyavirus, Rift Valley fever virus (RVFV), is a highly successful pathogen for which there are no vaccines or therapeutics. Translational arrest is a common antiviral strategy used by hosts. In response, RVFV inhibits two well-known antiviral pathways that attenuate translation during infection, PKR and type I IFN signaling. Despite this, translational arrest occurs during RVFV infection by unknown mechanisms. Here, we find that RVFV infection triggers the decay of core translation machinery mRNAs that possess a 5'-terminal oligopyrimidine (5'-TOP) motif in their 5'-UTR, including mRNAs encoding ribosomal proteins, which leads to a decrease in overall ribosomal protein levels. We find that the RNA decapping enzyme NUDT16 selectively degrades 5'-TOP mRNAs during RVFV infection and this decay is triggered in response to mTOR attenuation via the translational repressor 4EBP1/2 axis. Translational arrest of 5'-TOPs via 4EBP1/2 restricts RVFV replication, and this increased RNA decay results in the loss of visible RNA granules, including P bodies and stress granules. Because RVFV cap-snatches in RNA granules, the increased level of 5'-TOP mRNAs in this compartment leads to snatching of these targets, which are translationally suppressed during infection. Therefore, translation of RVFV mRNAs is compromised by multiple mechanisms during infection. Together, these data present a previously unknown mechanism for translational shutdown in response to viral infection and identify mTOR attenuation as a potential therapeutic avenue against bunyaviral infection.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fosfoproteínas/metabolismo , Biossíntese de Proteínas/fisiologia , Pirofosfatases/metabolismo , Sequência de Oligopirimidina na Região 5' Terminal do RNA/fisiologia , Febre do Vale de Rift/metabolismo , Vírus da Febre do Vale do Rift/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular , Primers do DNA/genética , Eletroforese em Gel de Poliacrilamida , Imunofluorescência , Humanos , Immunoblotting , Modelos Lineares , Luciferases , Sequência de Oligopirimidina na Região 5' Terminal do RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Proc Natl Acad Sci U S A ; 112(25): 7797-802, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26056282

RESUMO

Viruses must gain entry into cells to establish infection. In general, viruses enter either at the plasma membrane or from intracellular endosomal compartments. Viruses that use endosomal pathways are dependent on the cellular factors that control this process; however, these genes have proven to be essential for endogenous cargo uptake, and thus are of limited value for therapeutic intervention. The identification of genes that are selectively required for viral uptake would make appealing drug targets, as their inhibition would block an early step in the life cycle of diverse viruses. At this time, we lack pan-antiviral therapeutics, in part because of our lack of knowledge of such cellular factors. RNAi screening has begun to reveal previously unknown genes that play roles in viral infection. We identified dRNASEK in two genome-wide RNAi screens performed in Drosophila cells against West Nile and Rift Valley Fever viruses. Here we found that ribonuclease kappa (RNASEK) is essential for the infection of human cells by divergent and unrelated positive- and negative-strand-enveloped viruses from the Flaviviridae, Togaviridae, Bunyaviridae, and Orthomyxoviridae families that all enter cells from endosomal compartments. In contrast, RNASEK was dispensable for viruses, including parainfluenza virus 5 and Coxsackie B virus, that enter at the plasma membrane. RNASEK is dispensable for attachment but is required for uptake of these acid-dependent viruses. Furthermore, this requirement appears specific, as general endocytic uptake of transferrin is unaffected in RNASEK-depleted cells. Therefore, RNASEK is a potential host cell Achilles' heel for viral infection.


Assuntos
Endocitose , Fusão de Membrana , Ribonucleases/metabolismo , Animais , Drosophila , Concentração de Íons de Hidrogênio , Vírus da Febre do Vale do Rift/fisiologia , Vírus do Nilo Ocidental/fisiologia
8.
Proc Natl Acad Sci U S A ; 111(37): E3890-9, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25197089

RESUMO

In response to infection, the innate immune system rapidly activates an elaborate and tightly orchestrated gene expression program to induce critical antimicrobial genes. While many key players in this program have been identified in disparate biological systems, it is clear that there are additional uncharacterized mechanisms at play. Our previous studies revealed that a rapidly-induced antiviral gene expression program is active against disparate human arthropod-borne viruses in Drosophila. Moreover, one-half of this program is regulated at the level of transcriptional pausing. Here we found that Nup98, a virus-induced gene, was antiviral against a panel of viruses both in cells and adult flies since its depletion significantly enhanced viral infection. Mechanistically, we found that Nup98 promotes antiviral gene expression in Drosophila at the level of transcription. Expression profiling revealed that the virus-induced activation of 36 genes was abrogated upon loss of Nup98; and we found that a subset of these Nup98-dependent genes were antiviral. These Nup98-dependent virus-induced genes are Cdk9-dependent and translation-independent suggesting that these are rapidly induced primary response genes. Biochemically, we demonstrate that Nup98 is directly bound to the promoters of virus-induced genes, and that it promotes occupancy of the initiating form of RNA polymerase II at these promoters, which are rapidly induced on viral infection to restrict human arboviruses in insects.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/virologia , Regulação da Expressão Gênica , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/virologia , Vírus de RNA/fisiologia , Envelhecimento/patologia , Animais , Núcleo Celular/metabolismo , Genes de Insetos , Humanos , Poro Nuclear/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Transporte Proteico , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sindbis virus/fisiologia
9.
Cell Rep ; 5(6): 1737-48, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24332855

RESUMO

Alphaviruses are a large class of insect-borne human pathogens and little is known about the host-factor requirements for infection. To identify such factors, we performed a genome-wide RNAi screen using model Drosophila cells and validated 94 genes that impacted infection of Sindbis virus (SINV), the prototypical alphavirus. We identified a conserved role for SEC61A and valosin-containing protein (VCP) in facilitating SINV entry in insects and mammals. SEC61A and VCP selectively regulate trafficking of the entry receptor NRAMP2, and loss or pharmacological inhibition of these proteins leads to altered NRAMP2 trafficking to lysosomal compartments and proteolytic digestion within lysosomes. NRAMP2 is the major iron transporter in cells, and loss of NRAMP2 attenuates intracellular iron transport. Thus, this study reveals genes and pathways involved in both infection and iron homeostasis that may serve as targets for antiviral therapeutics or for iron-imbalance disorders.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Drosophila/metabolismo , Genoma de Inseto , Proteínas de Membrana/metabolismo , Sindbis virus/patogenicidade , Internalização do Vírus , Adenosina Trifosfatases/genética , Aedes/genética , Aedes/metabolismo , Aedes/virologia , Animais , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular Tumoral , Drosophila/genética , Drosophila/metabolismo , Drosophila/virologia , Proteínas de Drosophila/genética , Humanos , Ferro/metabolismo , Proteínas de Membrana/genética , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno/genética , Canais de Translocação SEC , Proteína com Valosina
11.
Proc Natl Acad Sci U S A ; 110(37): 15025-30, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23980175

RESUMO

A unique facet of arthropod-borne virus (arbovirus) infection is that the pathogens are orally acquired by an insect vector during the taking of a blood meal, which directly links nutrient acquisition and pathogen challenge. We show that the nutrient responsive ERK pathway is both induced by and restricts disparate arboviruses in Drosophila intestines, providing insight into the molecular determinants of the antiviral "midgut barrier." Wild-type flies are refractory to oral infection by arboviruses, including Sindbis virus and vesicular stomatitis virus, but this innate restriction can be overcome chemically by oral administration of an ERK pathway inhibitor or genetically via the specific loss of ERK in Drosophila intestinal epithelial cells. In addition, we found that vertebrate insulin, which activates ERK in the mosquito gut during a blood meal, restricts viral infection in Drosophila cells and against viral invasion of the insect gut epithelium. We find that ERK's antiviral signaling activity is likely conserved in Aedes mosquitoes, because genetic or pharmacologic manipulation of the ERK pathway affects viral infection of mosquito cells. These studies demonstrate that ERK signaling has a broadly antiviral role in insects and suggest that insects take advantage of cross-species signals in the meal to trigger antiviral immunity.


Assuntos
Arbovírus/imunologia , Drosophila melanogaster/imunologia , Drosophila melanogaster/metabolismo , Sistema de Sinalização das MAP Quinases , Aedes/imunologia , Aedes/metabolismo , Aedes/virologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Arbovírus/patogenicidade , Sistema Digestório/imunologia , Sistema Digestório/metabolismo , Sistema Digestório/virologia , Drosophila melanogaster/virologia , Feminino , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Insetos Vetores/imunologia , Insetos Vetores/metabolismo , Insetos Vetores/virologia , Insulina/farmacologia , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/imunologia , Interferência de RNA
12.
Genes Dev ; 27(13): 1511-25, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23824541

RESUMO

Bunyaviruses are an emerging group of medically important viruses, many of which are transmitted from insects to mammals. To identify host factors that impact infection, we performed a genome-wide RNAi screen in Drosophila and identified 131 genes that impacted infection of the mosquito-transmitted bunyavirus Rift Valley fever virus (RVFV). Dcp2, the catalytic component of the mRNA decapping machinery, and two decapping activators, DDX6 and LSM7, were antiviral against disparate bunyaviruses in both insect cells and adult flies. Bunyaviruses 5' cap their mRNAs by "cap-snatching" the 5' ends of poorly defined host mRNAs. We found that RVFV cap-snatches the 5' ends of Dcp2 targeted mRNAs, including cell cycle-related genes. Loss of Dcp2 allows increased viral transcription without impacting viral mRNA stability, while ectopic expression of Dcp2 impedes viral transcription. Furthermore, arresting cells in late S/early G2 led to increased Dcp2 mRNA targets and increased RVFV replication. Therefore, RVFV competes for the Dcp2-accessible mRNA pool, which is dynamically regulated and can present a bottleneck for viral replication.


Assuntos
Drosophila melanogaster/genética , Drosophila melanogaster/virologia , Genoma de Inseto/genética , Orthobunyavirus/fisiologia , Capuzes de RNA/metabolismo , Fatores de Transcrição , Replicação Viral/fisiologia , Aedes/virologia , Animais , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Capuzes de RNA/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
J Immunol ; 181(8): 5368-73, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18832693

RESUMO

Although c-FLIP has been identified as an important player in the extrinsic (death receptor-induced) apoptosis pathway, its endogenous function in mature T lymphocytes remains undefined. c-FLIP may inhibit or promote T cell death as previous data demonstrate that the c-FLIP(L) isoform can promote or inhibit caspase 8 activation while the c-FLIP(S) isoform promotes or inhibits T cell death when overexpressed. Although the c-FLIP(R) isoform inhibits cell death in cell lines, its function in T cells remains unknown. To investigate the function of c-FLIP in mature T cells, we have generated several genetic mouse models with c-FLIP or its individual isoforms deleted in mature T cells. Surprisingly, we found that c-FLIP protects mature T cells not only from apoptosis induced by the death receptors Fas and TNFR but also from TCR-mediated and spontaneous apoptosis. Thus, c-FLIP plays an essential role in protecting mature T cells from a death signal induced through the TCR itself and is required for naive T cell survival. Our results demonstrate that c-FLIP functions beyond the extrinsic death pathway.


Assuntos
Apoptose/imunologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/imunologia , Modelos Imunológicos , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Animais , Apoptose/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Caspase 8/genética , Caspase 8/imunologia , Camundongos , Camundongos Transgênicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptor fas/genética , Receptor fas/imunologia
14.
J Immunol ; 180(8): 5506-11, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18390734

RESUMO

Although the long isoform of cellular FLIP (c-FLIP(L)) has been implicated in TCR-mediated signaling, its role in T cell proliferation remains controversial. Some studies have demonstrated that overexpression of c-FLIP(L) promotes T cell proliferation and NF-kappaB activation, whereas others have reported that c-FLIP(L) overexpression has no effect or even inhibits T cell proliferation. To establish the role of c-FLIP(L) in T lymphocyte proliferation, we have generated a conditional knockout mouse strain specifically lacking c-FLIP(L) in T lymphocytes. c-FLIP(L)(-/-) mice exhibit severely impaired effector T cell development after Listeria monocytogenes infection in vivo and c-FLIP(L)-deficient T cells display defective TCR-mediated proliferation in vitro. However, c-FLIP(L)(-/-) T cells exhibit normal NF-kappaB activity upon TCR stimulation. These results demonstrate that c-FLIP(L) is essential for T lymphocyte proliferation through an NF-kappaB-independent pathway.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/fisiologia , Animais , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/química , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/imunologia , Proliferação de Células , Interleucina-2/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Knockout , Quinases de Proteína Quinase Ativadas por Mitógeno/imunologia , Isoformas de Proteínas/química , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA