Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 29(2): 476-487, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26474694

RESUMO

Targeted inhibiting insulin-like growth factor 1 is an effective approach for cancer therapy. Insulin-like growth factor binding protein 7 (IGFBP7) is considered as a potential therapeutic protein. However, producing high quality of such non-IgG proteins in mammalian cells is still a challenge in biopharmaceutical development. Here, we report a rapid production process by using transient gene transfection in HEK 293E cells. A set of constructs combining several expression promoters, leader sequences, and 5' un-translated regions were generated and optimized, from which the best vector with expression level at ~50mg/L was selected for production at 2L cell culture scale. Comparison study in downstream purification methods led to development of a scalable, non-affinity chromatography strategy through Super Q, Fast Flow Q, and Heparin columns. The product was characterized in purity (99%), isoelectric point, molecule weight, glycosylation, and stability by using SEC-HPLC, SDS-PAGE, isoelectric focusing and mass spectrometry. The highly purified product shows IGF-1 binding activity and inhibits IGF-1-induced cell proliferation. This process not only provides a remarkable high expression at ~50mg/L and pure glycosylated mammalian rhIGFBP7, also highlights that transient gene expression technology is practical to be used for production and early development of recombinant non-IgG therapeutic proteins.


Assuntos
Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/farmacologia , Fator de Crescimento Insulin-Like I/efeitos dos fármacos , Regiões 5' não Traduzidas/genética , Sequência de Aminoácidos , Proliferação de Células/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Vetores Genéticos , Glicosilação , Células HEK293 , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/biossíntese , Dados de Sequência Molecular , Proteínas Recombinantes/farmacologia , Transfecção
2.
Methods Mol Biol ; 801: 251-68, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21987258

RESUMO

Transient gene expression (TGE) in mammalian cells has become a routine process for expressing recombinant proteins in cell lines such as human embryonic kidney 293 and Chinese hamster ovary cells. The rapidly increasing need for recombinant proteins requires further improvements in TGE technology. While a great deal of focus has been directed toward optimizing the secretion of antibodies and other naturally secreted targets, much less work has been done on ways to improve cytoplasmic expression in mammalian cells. The benefits to protein production in mammalian cells, particularly for eukaryotic proteins, should be very significant - glycosylation and other posttranslational modifications will likely be native or near-native, solubility and protein folding would likely improve overexpression in heterologous hosts, and expression of proteins in their proper intracellular compartments is much more likely to occur. Improvements in this area have been slow, however, due to limited development of the cell culture processes needed for low-cost, higher-throughput expression in mammalian cells, and the relatively low diversity of DNA vectors for protein production in these systems. Here, we describe how the use of recombinational cloning, coupled with improvements in transfection protocols which increase speed and lower cost, can be combined to make mammalian cells much more amenable for routine recombinant protein expression.


Assuntos
Expressão Gênica , Proteínas Recombinantes/genética , Animais , Clonagem Molecular , Cricetinae , Fluorometria , Células HEK293 , Humanos , Polietilenoimina/química , Proteínas Recombinantes/análise , Proteínas Recombinantes/biossíntese , Fatores de Tempo , Transfecção
3.
Protein Expr Purif ; 76(2): 238-47, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21146612

RESUMO

Purifying proteins from recombinant sources is often difficult, time-consuming, and costly. We have recently instituted a series of improvements in our protein purification pipeline that allows much more accurate choice of expression host and conditions and purification protocols. The key elements are parallel cloning, small scale parallel expression and lysate preparation, and small scale parallel protein purification. Compared to analyzing expression data only, results from multiple small scale protein purifications predict success at scale-up with greatly improved reliability. Using these new procedures we purified eight of nine proteins from xenotropic murine leukemia virus-related virus (XMRV) on the first attempt at large scale.


Assuntos
Clonagem Molecular/métodos , Engenharia de Proteínas/métodos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/química , Animais , Baculoviridae/genética , Sequência de Bases , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Spodoptera , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/genética , Vírus Relacionado ao Vírus Xenotrópico da Leucemia Murina/metabolismo
4.
J Infect Dis ; 196 Suppl 2: S421-9, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17940979

RESUMO

BACKGROUND: Virus-like particles (VLPs) of Ebola virus (EBOV) and Marburg virus (MARV) produced in human 293T embryonic kidney cells have been shown to be effective vaccines against filoviral infection. In this study, we explored alternative strategies for production of filovirus-like particle-based vaccines, to accelerate the development process. The goal of this work was to increase the yield of VLPs, while retaining their immunogenic properties. METHODS: Ebola and Marburg VLPs (eVLPs and mVLPs, respectively) were generated by use of recombinant baculovirus constructs expressing glycoprotein, VP40 matrix protein, and nucleoprotein from coinfected insect cells. The baculovirus-derived eVLPs and mVLPs were characterized biochemically, and then the immune responses produced by the eVLPs in insect cells were studied further. RESULTS: The baculovirus-derived eVLPs elicited maturation of human myeloid dendritic cells (DCs), indicating their immunogenic properties. Mice vaccinated with insect cell-derived eVLPs generated antibody and cellular responses equivalent to those vaccinated with mammalian 293T cell-derived eVLPs and were protected from EBOV challenge in a dose-dependent manner. CONCLUSION: Together, these data suggest that filovirus-like particles produced by baculovirus expression systems, which are amenable to large-scale production, are highly immunogenic and are suitable as safe and effective vaccines for the prevention of filoviral infection.


Assuntos
Células Dendríticas/imunologia , Infecções por Filoviridae/imunologia , Doença pelo Vírus Ebola/imunologia , Doença do Vírus de Marburg/imunologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Ebolavirus/imunologia , Ebolavirus/fisiologia , Feminino , Filoviridae/imunologia , Humanos , Marburgvirus/imunologia , Marburgvirus/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Roedores , Replicação Viral
5.
Proc Natl Acad Sci U S A ; 103(42): 15552-7, 2006 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-17028174

RESUMO

Birt-Hogg-Dubé syndrome, a hamartoma disorder characterized by benign tumors of the hair follicle, lung cysts, and renal neoplasia, is caused by germ-line mutations in the BHD(FLCN) gene, which encodes a tumor-suppressor protein, folliculin (FLCN), with unknown function. The tumor-suppressor proteins encoded by genes responsible for several other hamartoma syndromes, LKB1, TSC1/2, and PTEN, have been shown to be involved in the mammalian target of rapamycin (mTOR) signaling pathway. Here, we report the identification of the FLCN-interacting protein, FNIP1, and demonstrate its interaction with 5' AMP-activated protein kinase (AMPK), a key molecule for energy sensing that negatively regulates mTOR activity. FNIP1 was phosphorylated by AMPK, and its phosphorylation was reduced by AMPK inhibitors, which resulted in reduced FNIP1 expression. AMPK inhibitors also reduced FLCN phosphorylation. Moreover, FLCN phosphorylation was diminished by rapamycin and amino acid starvation and facilitated by FNIP1 overexpression, suggesting that FLCN may be regulated by mTOR and AMPK signaling. Our data suggest that FLCN, mutated in Birt-Hogg-Dubé syndrome, and its interacting partner FNIP1 may be involved in energy and/or nutrient sensing through the AMPK and mTOR signaling pathways.


Assuntos
Proteínas de Transporte/metabolismo , Complexos Multienzimáticos/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas , Proteínas Proto-Oncogênicas , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor , Proteínas Quinases Ativadas por AMP , Animais , Proteínas de Transporte/genética , Linhagem Celular , Clonagem Molecular , Ativação Enzimática , Humanos , Dados de Sequência Molecular , Complexos Multiproteicos , Ligação Proteica , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Síndrome , Serina-Treonina Quinases TOR , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
6.
Genome Res ; 14(10B): 2121-7, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15489334

RESUMO

The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5'-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline.


Assuntos
Clonagem Molecular/métodos , DNA Complementar , Biblioteca Gênica , Fases de Leitura Aberta/fisiologia , Animais , Biologia Computacional , Primers do DNA , DNA Complementar/genética , DNA Complementar/metabolismo , Humanos , Camundongos , National Institutes of Health (U.S.) , Ratos , Estados Unidos , Xenopus laevis/genética , Peixe-Zebra/genética
7.
Proc Natl Acad Sci U S A ; 99(26): 16899-903, 2002 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-12477932

RESUMO

The National Institutes of Health Mammalian Gene Collection (MGC) Program is a multiinstitutional effort to identify and sequence a cDNA clone containing a complete ORF for each human and mouse gene. ESTs were generated from libraries enriched for full-length cDNAs and analyzed to identify candidate full-ORF clones, which then were sequenced to high accuracy. The MGC has currently sequenced and verified the full ORF for a nonredundant set of >9,000 human and >6,000 mouse genes. Candidate full-ORF clones for an additional 7,800 human and 3,500 mouse genes also have been identified. All MGC sequences and clones are available without restriction through public databases and clone distribution networks (see http:mgc.nci.nih.gov).


Assuntos
DNA Complementar/química , Análise de Sequência de DNA , Algoritmos , Animais , DNA Complementar/análise , Biblioteca Gênica , Humanos , Camundongos , Fases de Leitura Aberta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA