Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Analyst ; 149(19): 4842-4850, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041602

RESUMO

α-synuclein aggregation is an important hallmark of neurodegenerative diseases such as Parkinson's disease (PD) and Lewy body dementia. α-synuclein has been increasingly used as a diagnostic biomarker in PD and other synucleinopathies. Current clinical assays rely on antibody-based immunoassays to detect α-synuclein, which possess high sensitivity, afford high throughput and require small sample volumes. The utility of these assays, however, may be compounded by the specificity, selectivity and batch-to-batch heterogeneity of the antibody used, which can lead to deviations in the total amount of the protein measured when comparing results among different laboratories. Similarly, current mass spectrometry-based quantification methods for α-synuclein lack well-defined, value assigned calibrators to ensure comparability of measurements. Therefore, there is still an unmet need for the standardisation of clinical measurements for α-synuclein that can be achieved by the development of reference measurement procedures (RMPs) utilising calibrators traceable to the SI (International System of Units). Here, we report a candidate RMP for α-synuclein, using an SI traceable primary calibrator and an isotope dilution mass spectrometry (IDMS) approach to address this need. The gravimetrically prepared primary calibrator was traceably quantified utilising a combination of amino acid analysis (AAA) and quantitative nuclear magnetic resonance (qNMR) for value assignment. An optimised targeted sample clean-up procedure involving a non-denaturing Lys-C digestion and solid-phase extraction strategy was devised, followed by the development of a targeted multiple reaction monitoring (MRM) method for the quantification of α-synuclein in cerebrospinal fluid (CSF). This candidate RMP was then deployed for the sensitive detection and accurate quantification of multiple proteotypic α-synuclein peptides in patient derived CSF samples. The LC-MS based results were subsequently compared to immunoassay data to assess the overall performance of our approach. The development and adoption of this candidate RMP, along with the availability of the SI traceable primary calibrator will allow for reliable quantifications of α-synuclein in CSF by an LC-MS based assay. The RMP will potentially contribute towards the standardisation of this important biomarker and may lead to future interlaboratory comparisons.


Assuntos
alfa-Sinucleína , alfa-Sinucleína/líquido cefalorraquidiano , alfa-Sinucleína/análise , Humanos , Calibragem , Padrões de Referência , Espectrometria de Massas/métodos , Doença de Parkinson/líquido cefalorraquidiano , Doença de Parkinson/diagnóstico , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/análise
2.
Proteins ; 92(5): 649-664, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38149328

RESUMO

Glial fibrillary acidic protein (GFAP) is a promising biomarker for brain and spinal cord disorders. Recent studies have highlighted the differences in the reliability of GFAP measurements in different biological matrices. The reason for these discrepancies is poorly understood as our knowledge of the protein's 3-dimensional conformation, proteoforms, and aggregation remains limited. Here, we investigate the structural properties of GFAP under different conditions. For this, we characterized recombinant GFAP proteins from various suppliers and applied hydrogen-deuterium exchange mass spectrometry (HDX-MS) to provide a snapshot of the conformational dynamics of GFAP in artificial cerebrospinal fluid (aCSF) compared to the phosphate buffer. Our findings indicate that recombinant GFAP exists in various conformational species. Furthermore, we show that GFAP dimers remained intact under denaturing conditions. HDX-MS experiments show an overall decrease in H-bonding and an increase in solvent accessibility of GFAP in aCSF compared to the phosphate buffer, with clear indications of mixed EX2 and EX1 kinetics. To understand possible structural interface regions and the evolutionary conservation profiles, we combined HDX-MS results with the predicted GFAP-dimer structure by AlphaFold-Multimer. We found that deprotected regions with high structural flexibility in aCSF overlap with predicted conserved dimeric 1B and 2B domain interfaces. Structural property predictions combined with the HDX data show an overall deprotection and signatures of aggregation in aCSF. We anticipate that the outcomes of this research will contribute to a deeper understanding of the structural flexibility of GFAP and ultimately shed light on its behavior in different biological matrices.


Assuntos
Medição da Troca de Deutério , Proteína Glial Fibrilar Ácida , Fosfatos , Humanos , Medição da Troca de Deutério/métodos , Proteína Glial Fibrilar Ácida/química , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/fisiologia , Conformação Proteica , Reprodutibilidade dos Testes , Proteínas Recombinantes
3.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37511382

RESUMO

Neurofilament-light chain (Nf-L) is a non-specific early-stage biomarker widely studied in the context of neurodegenerative diseases (NDD) and traumatic brain injuries (TBI), which can be measured in biofluids after axonal damage. Originally measured by enzyme-linked immunosorbent assay (ELISA) in cerebrospinal fluid (CSF), Nf-L can now be quantified in blood with the emergence of ultrasensitive assays. However, to ensure successful clinical implementation, reliable clinical thresholds and reference measurement procedures (RMP) should be developed. This includes establishing and distributing certified reference materials (CRM). As a result of the complexity of Nf-L and the number of circulating forms, a clear definition of what is measured when immunoassays are used is also critical to achieving standardization to ensure the long-term success of those assays. The use of powerful tools such as mass spectrometry for developing RMP and defining the measurand is ongoing. Here, we summarize the current methods in use for quantification of Nf-L in biofluid showing potential for clinical implementation. The progress and challenges in developing RMP and defining the measurand for Nf-L standardization of diagnostic tests are addressed. Finally, we discuss the impact of pathophysiological factors on Nf-L levels and the establishment of a clinical cut-off.


Assuntos
Axônios , Filamentos Intermediários , Biomarcadores/líquido cefalorraquidiano , Ensaio de Imunoadsorção Enzimática , Imunoensaio , Proteínas de Neurofilamentos
4.
Clin Chem Lab Med ; 61(2): 302-310, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36395058

RESUMO

OBJECTIVES: During 2020, the UK's Department of Health and Social Care (DHSC) established the Moonshot programme to fund various diagnostic approaches for the detection of SARS-CoV-2, the pathogen behind the COVID-19 pandemic. Mass spectrometry was one of the technologies proposed to increase testing capacity. METHODS: Moonshot funded a multi-phase development programme, bringing together experts from academia, industry and the NHS to develop a state-of-the-art targeted protein assay utilising enrichment and liquid chromatography tandem mass spectrometry (LC-MS/MS) to capture and detect low levels of tryptic peptides derived from SARS-CoV-2 virus. The assay relies on detection of target peptides, ADETQALPQRK (ADE) and AYNVTQAFGR (AYN), derived from the nucleocapsid protein of SARS-CoV-2, measurement of which allowed the specific, sensitive, and robust detection of the virus from nasopharyngeal (NP) swabs. The diagnostic sensitivity and specificity of LC-MS/MS was compared with reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) via a prospective study. RESULTS: Analysis of NP swabs (n=361) with a median RT-qPCR quantification cycle (Cq) of 27 (range 16.7-39.1) demonstrated diagnostic sensitivity of 92.4% (87.4-95.5), specificity of 97.4% (94.0-98.9) and near total concordance with RT-qPCR (Cohen's Kappa 0.90). Excluding Cq>32 samples, sensitivity was 97.9% (94.1-99.3), specificity 97.4% (94.0-98.9) and Cohen's Kappa 0.95. CONCLUSIONS: This unique collaboration between academia, industry and the NHS enabled development, translation, and validation of a SARS-CoV-2 method in NP swabs to be achieved in 5 months. This pilot provides a model and pipeline for future accelerated development and implementation of LC-MS/MS protein/peptide assays into the routine clinical laboratory.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , COVID-19/diagnóstico , Teste para COVID-19 , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida , Estudos Prospectivos , Técnicas de Laboratório Clínico/métodos , Sensibilidade e Especificidade , Peptídeos
5.
Clin Chem ; 68(8): 1075-1083, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35699503

RESUMO

BACKGROUND: Newborn screening (NBS) laboratories in the United Kingdom adhere to common protocols based on single analyte cutoff values (COVs); therefore, interlaboratory harmonization is of paramount importance. Interlaboratory variation for screening analytes in UK NBS laboratories ranges from 17% to 59%. While using common stable isotope internal standards has been shown to significantly reduce interlaboratory variation, instrument set-up, sample extraction, and calibration approach are also key factors. METHODS: Dried blood spot (DBS) extraction processes, instrument set-up, mobile-phase composition, sample introduction technique, and calibration approach of flow injection analysis-tandem mass spectrometry (FIA-MS/MS) methods were optimized. Inter- and intralaboratory variation of methionine, leucine, phenylalanine, tyrosine, isovaleryl-carnitine, glutaryl-carnitine, octanoyl-carnitine, and decanoyl-carnitine were determined pre- and postoptimization, using 3 different calibration approaches. RESULTS: Optimal recovery of analytes from DBS was achieved with a 35-min extraction time and 80% methanol (150 µL). Optimized methodology decreased the mean intralaboratory percentage relative SD (%RSD) for the 8 analytes from 20.7% (range 4.1-46.0) to 5.4% (range 3.0-8.5). The alternative calibration approach reduced the mean interlaboratory %RSD for all analytes from 16.8% (range 4.1-25.0) to 7.1% (range 4.1-11.0). Nuclear magnetic resonance analysis of the calibration material highlighted the need for standardization. The purities of isovaleryl-carnitine and glutaryl-carnitine were 85.13% and 69.94% respectively, below the manufacturer's stated values of ≥98%. CONCLUSIONS: For NBS programs provided by multiple laboratories using single analyte COVs, harmonization and standardization of results can be achieved by optimizing legacy FIA-MS/MS methods, adopting a common analytical protocol, and using standardized calibration material rather than internal calibration.


Assuntos
Análise de Injeção de Fluxo , Espectrometria de Massas em Tandem , Calibragem , Carnitina , Análise de Injeção de Fluxo/métodos , Humanos , Recém-Nascido , Triagem Neonatal/métodos , Padrões de Referência , Espectrometria de Massas em Tandem/métodos
6.
Metabolism ; 126: 154922, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34715115

RESUMO

BACKGROUND: The global COVID-19 pandemic has led to extensive development in many fields, including the diagnosis of COVID-19 infection by mass spectrometry. The aim of this systematic review and meta-analysis was to assess the accuracy of mass spectrometry diagnostic tests developed so far, across a wide range of biological matrices, and additionally to assess risks of bias and applicability in studies published to date. METHOD: 23 retrospective observational cohort studies were included in the systematic review using the PRISMA-DTA framework, with a total of 2858 COVID-19 positive participants and 2544 controls. Risks of bias and applicability were assessed via a QUADAS-2 questionnaire. A meta-analysis was also performed focusing on sensitivity, specificity, diagnostic accuracy and Youden's Index, in addition to assessing heterogeneity. FINDINGS: Sensitivity averaged 0.87 in the studies reviewed herein (interquartile range 0.81-0.96) and specificity 0.88 (interquartile range 0.82-0.98), with an area under the receiver operating characteristic summary curve of 0.93. By subgroup, the best diagnostic results were achieved by viral proteomic analyses of nasopharyngeal swabs and metabolomic analyses of plasma and serum. The performance of other sampling matrices (breath, sebum, saliva) was less good, indicating that these protocols are currently insufficiently mature for clinical application. CONCLUSIONS: This systematic review and meta-analysis demonstrates the potential for mass spectrometry and 'omics in achieving accurate test results for COVID-19 diagnosis, but also highlights the need for further work to optimize and harmonize practice across laboratories before these methods can be translated to clinical applications.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Espectrometria de Massas/métodos , Humanos , Sensibilidade e Especificidade
7.
Anal Bioanal Chem ; 413(2): 331-344, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33140125

RESUMO

This work represents the first systematic speciation study of selenium (Se) in plasma from subjects participating in a pilot study for a cancer prevention trial (PRECISE). This involved supplementation of elderly British and Danish individuals with selenised yeast for 6 months and 5 years, respectively, at 100, 200, and 300 µg Se/day or placebo. Speciation data was obtained for male plasma using HPLC-ICP-MS and HPLC-ESI-MS/MS. With the proposed strategy, approximately 1.5 mL of plasma was needed to determine total Se concentration and the fractionation of Se in high molecular weight (HMW) and low molecular weight (LMW) pools, and for quantification and identification of small Se species. For the first time, Se-methyl-selenocysteine (MSC) and methyl-2-acetamido-2deoxy1-seleno-ß-D-galactopyranoside (Selenosugar-1) were structurally confirmed in plasma after supplementation with selenised yeast within the studied range. Determination of selenomethionine (SeMet) incorporated non-specifically into albumin (SeALB) was achieved by HPLC-ICP-MS after hydrolysis. By subtracting this SeMet concentration from the total Se in the HMW pool, the concentration of Se incorporated into selenoproteins was calculated. Results from the speciation analysis of the free Se metabolite fraction (5% of total plasma Se) suggest a significant increase in the percentage of Se (as SeMet plus Selenosugar-1) of up to 80% of the total Se in the LMW fraction after 6 months of supplementation. The Se distribution in the HMW fraction reflects a significant increase in SeALB with Se depletion from selenoproteins, which occurs most significantly at doses of over 100 µg Se/day after 5 years. The results of this work will inform future trial design. Graphical abstract.


Assuntos
Neoplasias/sangue , Neoplasias/prevenção & controle , Selênio/administração & dosagem , Selênio/sangue , Idoso , Fracionamento Químico , Cromatografia Líquida de Alta Pressão/métodos , Dinamarca , Suplementos Nutricionais , Enzimas/química , Humanos , Hidrólise , Masculino , Projetos Piloto , Selênio/análise , Compostos de Selênio , Selenometionina/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Análise Espectral , Espectrometria de Massas em Tandem , Reino Unido
8.
Rapid Commun Mass Spectrom ; 35 Suppl 2: e8534, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31334890

RESUMO

RATIONALE: As the popularity of ambient ionisation grows, so too does the importance of understanding its capabilities and limitations. The British Mass Spectrometry Society Special Interest Group on Ambient Ionisation has carried out two studies into the use of ambient ionisation, the results of which are presented here. METHODS: The first study (study 1) examined the detection and quantitation capabilities of ambient ionisation while the second examined repeatability and robustness. For study 1 participants were sent a range of samples including two calibration sample sets and asked to analyse them. For study 2, two samples containing the same eight-component mixture were provided (one in solvent, one in matrix); participants were asked to analyse these samples multiple times, over multiple days to allow assessment of repeatability. RESULTS: Study 1 showed that small, polar compounds were well detected by the participants while lower polarity compounds were less well detected. For many samples the introduction method appeared to be a significant factor in the observed spectra. The quantitation study gave good results but revealed significant variability. For study 2 the mean repeatabilities were 65% in solvent and 88% in matrix. The inclusion of an internal standard was shown to greatly improve repeatability. CONCLUSIONS: Ambient ionisation is capable of ionising a wide range of compounds with good precision and excellent repeatability; however, in order to obtain such data care must be taken with the experimental design. The data can be significantly improved with a well-chosen internal standard.

9.
Int J Neonatal Screen ; 6(4)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228114

RESUMO

In 2015, the newborn screening (NBS) programmes in England and Wales were expanded to include four additional disorders: Classical Homocystinuria, Isovaleric Acidemia, Glutaric Aciduria Type 1 and Maple Syrup Urine Disease, bringing the total number of analytes quantified to eight: phenylalanine, tyrosine, leucine, methionine, isovalerylcarnitine, glutarylcarnitine, octanoylcarnitine and decanoylcarnitine. Post-implementation, population data monitoring showed that inter-laboratory variation was greater than expected, with 90th centiles varying from 17 to 59%. We evaluated the effect of stable isotope internal standard (IS) used for quantitation on inter-laboratory variation. Four laboratories analysed routine screening samples (n > 101,820) using a common IS. Inter-laboratory variation was determined for the eight analytes and compared with results obtained using an in-house common IS (n > 102,194). A linear mixed-effects model was fitted to the data. Using a common IS mix reduced the inter-laboratory variation significantly (p < 0.05) for five analytes. For three analytes, the lack of significance was explained by use of individual laboratory "calibration factors". For screening programmes where laboratories adhere to single analyte cut-off values (COVs), it is important that inter-laboratory variation is minimised, primarily to prevent false positive results. Whilst the use of a common IS helps achieve this, it is evident that instrument set-up also contributes to inter-laboratory variation.

10.
J AOAC Int ; 101(1): 162-169, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29202918

RESUMO

It is now well known that an incident investigated in the United Kingdom in 2015 of cumin alleged to be contaminated with almond, a risk for people with almond allergy, was caused by the Prunus species, Prunus mahaleb. In the United Kingdom, the Government Chemist offers a route of technical appeal from official findings in the food control system. Findings of almond in two official samples, cumin and paprika, which had prompted action to exclude the consignments from the food chain, were so referred. Herein are described the approaches deployed to resolve the analytical issues during the investigation of the incidents. The cross-reactivity of ELISA to Prunus species was confirmed, and although this is useful in screening for the genus, orthogonal techniques are required to identify the species and confirm its presence. Two novel PCR assays were developed: one specific for P. mahaleb and the other a screening method capable of identifying common Prunus DNA. Peptides unique to almond and mahaleb were identified, permitting LC-tandem MS and criteria were developed for peptide identification to forensic standards. This work enables a staged approach to be taken to any future incident thought to involve Prunus species and provides a template for the investigation of similar incidents.


Assuntos
Alérgenos/análise , Ensaio de Imunoadsorção Enzimática , Análise de Alimentos , Contaminação de Alimentos/análise , Hipersensibilidade Alimentar , Prunus dulcis/química , Espectrometria de Massas , Biologia Molecular , Prunus dulcis/genética , Reino Unido
11.
Artigo em Inglês | MEDLINE | ID: mdl-27690756

RESUMO

Albendazole, one of the benzimidazole anthelmintics, is used in ruminants and has maximum residue limits in muscle, fat and other tissue owing to reported teratogenicity. Albendazole is extensively metabolised in domestic animals and humans with rapid conversion to a sulphoxide and subsequently sulphone and amino sulphone metabolites. Sulphoxide metabolites are responsible for the systemic biological activity of benzimidazole drugs. Herein we report a case of disputed results for albendazole in a consignment sampled at import in which the Official Analyst certified against the consignment for excess albendazole. A laboratory acting for the importer reported data below the MRL, including a finding of the parent drug which is not included in the residue definition. The Government Chemist has a statutory duty as a route of technical appeal in the UK Official Food Control system and the case was referred for referee analysis. We report our findings based on a LC-MS/MS method, which confirmed the official findings, did not reveal the presence of the parent drug but identified hot spots of albendazole marker residues in the consignment. We discuss the need for recommendations on official sampling at import and interpretation of results.


Assuntos
Albendazol/análise , Anti-Helmínticos/análise , Dissidências e Disputas/legislação & jurisprudência , Resíduos de Drogas/análise , Carne/análise , Albendazol/metabolismo , Animais , Anti-Helmínticos/metabolismo , Biotransformação , Bovinos , Cromatografia Líquida , Resíduos de Drogas/metabolismo , Alimentos em Conserva/análise , Guias como Assunto , Humanos , Controle de Qualidade , Sulfonas/análise , Sulfonas/metabolismo , Sulfóxidos/análise , Sulfóxidos/metabolismo , Espectrometria de Massas em Tandem , Reino Unido
12.
Rapid Commun Mass Spectrom ; 25(17): 2570-2, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21910291
13.
Anal Bioanal Chem ; 399(5): 1789-97, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21140135

RESUMO

The formation of intracellular dimethylselenide (DMSe) as a product of exposure of non-malignant (PBMCs) and lymphoma (RL and DHL-4) cell lines to methylseleninic acid (MSA) at clinical levels is suggested here for the first time. This was achieved by analysis of cell lysates by HPLC coupled to ICP-MS via APEX-Q nebulisation, enabling limits of detection for target methyl-Se species which are up to 12-fold lower than those obtained with conventional nebulisation. Methyl-Se-glutathione (CH3Se-SG), although detected in lysates of cells exposed to MSA, was found to be a reaction product of MSA with glutathione. This was confirmed by HPLC-ESI MS (MS) analysis of lysates of control cells (unexposed to Se) spiked with MSA. The MS/MS data obtained by collision-induced dissociation fragmentation of the ion m/z 402 (for [M+H](+) 8°Se) were consistent with the presence of CH3Se-SG. Formation of DMSe was not detected by HPLC-ICP-MS in these spiked lysates, and it was found to require live cells in cell media containing MSA. Interestingly, the ratio of DMSe to CH3Se-SG was significantly higher in lymphoma cells exposed to MSA in comparison to non-malignant cells. Moreover, maximum Se uptake levels in lymphoma cell lines seemed to be reached much earlier (after 10 min of MSA exposure) than in non-malignant cells. Finally, the GC-TOF-MS speciation data obtained for cell headspace suggested that the major Se species (dimethyldiselenide) appeared to be present in lymphoma cell headspace at significantly higher concentrations than in non-malignant cell headspace after only 10 min of exposure to MSA. Evidence for the presence of dimethylselenidesulfide in lymphoma cell headspace is also provided for the first time.


Assuntos
Linfoma de Células B/química , Selênio/análise , Selênio/farmacocinética , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Humanos , Linfoma de Células B/metabolismo , Espectrometria de Massas , Compostos Organosselênicos/metabolismo , Compostos Organosselênicos/farmacologia , Distribuição Tecidual
14.
J Chromatogr A ; 1216(42): 7001-6, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19758595

RESUMO

This work investigates for the first time the potential of mixed-mode (anion-exchange with reversed-phase) high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (ICP-MS) for the simultaneous retention and selective separation of a range of inorganic and organically-bound selenium (Se) species. Baseline separation and detection of selenocystine (SeCys(2)), Se-methyl-selenocysteine (SeMC), selenomethionine (SeMet), methylseleninic acid (MSA), selenite, gamma-glutamyl-methyl-selenocysteine (gamma-glutamyl-SeMC), and selenate in a Se standard mixture by mixed-mode HPLC-ICP-MS was achieved by switching between two citrate mobile phases of different pH and ionic strength within a single chromatographic run of 20 min. Limits of detection obtained for these Se species ranged from 80 ng kg(-1) (for SeMC) to 123 ng kg(-1) (for selenate). Using this approach as developed for selenium speciation, an adequate separation of inorganic and organic As compounds was also achieved. These include arsenite, arsenate, arsenobetaine (AsB) and dimethylarsenic acid (DMA), which may coexist with Se species in biological samples. Application of the newly proposed methodology to the investigation of the elemental species distribution in watercress (used as the model sample) after enzymatic hydrolysis or leaching in water by accelerated solvent extraction (ASE) was addressed. Only SeMet, SeMC and selenate could be tentatively identified in watercress extracts by mixed-mode HPLC-ICP-MS and retention time matching with standards. Recoveries (n=3) of these Se species from samples spiked with standards averaged 102% (for SeMC), 94.9% (for SeMet) and 98.3% (for selenate). Verification of the presence of SeMet and SeMC in an enzymatic watercress extract was achieved by on-line HPLC-ESI MS/MS in selected reaction monitoring (SRM) mode.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Compostos Organosselênicos/isolamento & purificação , Compostos de Selênio/isolamento & purificação , Espectrometria de Massas em Tandem/métodos , Brassicaceae/química , Brassicaceae/metabolismo , Cisteína/análogos & derivados , Metionina/análogos & derivados , Compostos Organosselênicos/química , Extratos Vegetais/química , Reprodutibilidade dos Testes , Compostos de Selênio/química , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA