Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36363610

RESUMO

Mixed Matrix Membranes (MMM) with enhanced selectivity and permeability are preferred for gas separations. The porous metal-organic frameworks (MOFs) materials incorporated in them play a crucial part in improving the performance of MMM. In this study, Zeolitic imidazolate frameworks (ZIF-90) are selected to fabricate Polyetherimide (PEI) MMMs owing to their lucrative structural and chemical properties. This work reports new controlled post-synthetic modifications of ZIF-90 (50-PSM-ZIF-90) with ethanolamine to control the diffusion and uptake of CO2. Physical and chemical properties of ZIF-90, such as stability and presence of aldehyde functionality in the imidazolate linker, allow for easy modulation of the ZIF-90 pores and window size to tune the gas transport properties across ZIF-90-based membranes. Effects of these materials were investigated on the performance of MMMs and compared with pure PEI membranes. Performance of the MMMs was evaluated in terms of permeability of different gases and selective separation of CO2 and H2 gas. Results presented that the permeability of all membranes was in the following order, i.e., P(H2) > P(CO2) > P(O2) > P(CH4) > P(C2H6) > P(C3H8) > P(N2), demonstrating that kinetic gas diffusion is the predominant gas transport mode in these membranes. Among all the membranes, permeability of pure PEI membrane was highest for all gases due to the uniform porous morphology. The pure PEI membrane showed highest permeability of H2, which is 486.5 Barrer, followed by 49 Barrer for O2, 29 Barrer for N2, 142 Barrer for CO2, 41 Barrer for CH4, 40 Barrer for C2H6 and 39.6 Barrer for C3H8. Results also confirm the superiority of controlled PSM-ZIF-90-PEI membrane over the pure PEI and ZIF-90-PEI membranes in CO2 and H2 separation performance. The 50-PSM-ZIF-90 PEI membrane exhibited a 20% increase in CO2 separation from methane and a 26% increase over nitrogen compared to the ZIF-90-PEI membrane. The 50-PSM-ZIF-90 PEI membrane showed 15% more H2/O2 separation and 9% more H2/CH4 separation than ZIF-90 PEI membrane. Overall, this study represents the role of controlled PSM in enhancing the property of new materials like ZIF and its application in MMMs fabrication to develop a promising approach for the CO2 capture and separation.

2.
Waste Manag ; 124: 54-62, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33601178

RESUMO

A cross-linked polymer inclusion membrane (CL-PIM) incorporating the extractant trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl) phosphinate (Cyphos® IL 104) was developed for the first time for the enhanced Au(III) recovery from aqua regia digests of electronic waste (discarded mobile phones). Cellulose triacetate (CTA), poly(vinyl chloride) (PVC) and poly(vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP) were examined as base polymers. The suitability of poly(ethylene glycol) dimethylacrylate (PEGDMA), poly(ethylene glycol) divinyl ether (PEGDVE) and N-ethylmaleimide (NEM) as cross-linking agents, and the possibility of using triarylsulfonium hexafluorophosphate (TASHFP) and 2,2-dimethoxy-2-phenylacetophenone (DMPA) as initiators were investigated. It was demonstrated that the CL-PIMs composed of Cyphos® IL 104 (30 wt%), PVDF-HFP, PEGDMA (base polymer to cross-linking agent ratio 6:4) and DMPA (1 wt%) or TASHFP (2 wt%) transported Au(III) from 2.5 mol L-1 hydrochloric acid solutions twice as fast as their non-CL-PIM counterpart, showing excellent stability over five successive transport experiments. However, in aqua regia feed solutions (6 mol L-1 acidity) only the CL-PIM containing TASHFP was able to achieve complete Au(III) recovery. AFM studies revealed that the PVDF-HFP-based CL-PIMs had a much higher surface contact area when compared to their non-CL counterpart, and this is proposed to be the reason for their superior transport performance. The CL-PIM that showed good transport efficiency in aqua regia was also applied to aqua regia digests of electronic waste from two mobile phones, and Au(III) was selectively recovered in less than 24 h, while other metals present in significantly higher concentrations were not transported.


Assuntos
Resíduo Eletrônico , Polímeros , Ouro , Membranas Artificiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA