Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Vis Comput Graph ; 28(1): 357-367, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34587083

RESUMO

Model checkers provide algorithms for proving that a mathematical model of a system satisfies a given specification. In case of a violation, a counterexample that shows the erroneous behavior is returned. Understanding these counterexamples is challenging, especially for hyperproperty specifications, i.e., specifications that relate multiple executions of a system to each other. We aim to facilitate the visual analysis of such counterexamples through our HyperVis tool, which provides interactive visualizations of the given model, specification, and counterexample. Within an iterative and interdisciplinary design process, we developed visualization solutions that can effectively communicate the core aspects of the model checking result. Specifically, we introduce graphical representations of binary values for improving pattern recognition, color encoding for better indicating related aspects, visually enhanced textual descriptions, as well as extensive cross-view highlighting mechanisms. Further, through an underlying causal analysis of the counterexample, we are also able to identify values that contributed to the violation and use this knowledge for both improved encoding and highlighting. Finally, the analyst can modify both the specification of the hyperproperty and the system directly within HyperVis and initiate the model checking of the new version. In combination, these features notably support the analyst in understanding the error leading to the counterexample as well as iterating the provided system and specification. We ran multiple case studies with HyperVis and tested it with domain experts in qualitative feedback sessions. The participants' positive feedback confirms the considerable improvement over the manual, text-based status quo and the value of the tool for explaining hyperproperties.

2.
IEEE Trans Vis Comput Graph ; 27(2): 1644-1654, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33074814

RESUMO

Matrix visualizations are a useful tool to provide a general overview of a graph's structure. For multivariate graphs, a remaining challenge is to cope with the attributes that are associated with nodes and edges. Addressing this challenge, we propose responsive matrix cells as a focus+context approach for embedding additional interactive views into a matrix. Responsive matrix cells are local zoomable regions of interest that provide auxiliary data exploration and editing facilities for multivariate graphs. They behave responsively by adapting their visual contents to the cell location, the available display space, and the user task. Responsive matrix cells enable users to reveal details about the graph, compare node and edge attributes, and edit data values directly in a matrix without resorting to external views or tools. We report the general design considerations for responsive matrix cells covering the visual and interactive means necessary to support a seamless data exploration and editing. Responsive matrix cells have been implemented in a web-based prototype based on which we demonstrate the utility of our approach. We describe a walk-through for the use case of analyzing a graph of soccer players and report on insights from a preliminary user feedback session.

3.
IEEE Trans Vis Comput Graph ; 24(1): 626-636, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28866515

RESUMO

We present VISTILES, a conceptual framework that uses a set of mobile devices to distribute and coordinate visualization views for the exploration of multivariate data. In contrast to desktop-based interfaces for information visualization, mobile devices offer the potential to provide a dynamic and user-defined interface supporting co-located collaborative data exploration with different individual workflows. As part of our framework, we contribute concepts that enable users to interact with coordinated & multiple views (CMV) that are distributed across several mobile devices. The major components of the framework are: (i) dynamic and flexible layouts for CMV focusing on the distribution of views and (ii) an interaction concept for smart adaptations and combinations of visualizations utilizing explicit side-by-side arrangements of devices. As a result, users can benefit from the possibility to combine devices and organize them in meaningful spatial layouts. Furthermore, we present a web-based prototype implementation as a specific instance of our concepts. This implementation provides a practical application case enabling users to explore a multivariate data collection. We also illustrate the design process including feedback from a preliminary user study, which informed the design of both the concepts and the final prototype.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA