Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5609, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965228

RESUMO

Epilepsy affects 1% of the general population and 30% of patients are resistant to antiepileptic drugs. Although optogenetics is an efficient antiepileptic strategy, the difficulty of illuminating deep brain areas poses translational challenges. Thus, the search of alternative light sources is strongly needed. Here, we develop pH-sensitive inhibitory luminopsin (pHIL), a closed-loop chemo-optogenetic nanomachine composed of a luciferase-based light generator, a fluorescent sensor of intracellular pH (E2GFP), and an optogenetic actuator (halorhodopsin) for silencing neuronal activity. Stimulated by coelenterazine, pHIL experiences bioluminescence resonance energy transfer between luciferase and E2GFP which, under conditions of acidic pH, activates halorhodopsin. In primary neurons, pHIL senses the intracellular pH drop associated with hyperactivity and optogenetically aborts paroxysmal activity elicited by the administration of convulsants. The expression of pHIL in hippocampal pyramidal neurons is effective in decreasing duration and increasing latency of pilocarpine-induced tonic-clonic seizures upon in vivo coelenterazine administration, without affecting higher brain functions. The same treatment is effective in markedly decreasing seizure manifestations in a murine model of genetic epilepsy. The results indicate that pHIL represents a potentially promising closed-loop chemo-optogenetic strategy to treat drug-refractory epilepsy.


Assuntos
Epilepsia , Neurônios , Optogenética , Animais , Concentração de Íons de Hidrogênio , Camundongos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Epilepsia/fisiopatologia , Epilepsia/metabolismo , Epilepsia/tratamento farmacológico , Humanos , Convulsões/tratamento farmacológico , Convulsões/fisiopatologia , Convulsões/metabolismo , Halorrodopsinas/metabolismo , Halorrodopsinas/genética , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Masculino , Luciferases/metabolismo , Luciferases/genética , Células Piramidais/metabolismo , Células Piramidais/efeitos dos fármacos , Imidazóis/farmacologia , Pilocarpina/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Células HEK293 , Pirazinas
2.
J Cell Biol ; 221(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35293964

RESUMO

Contact inhibition of locomotion (CIL) is a process that regulates cell motility upon collision with other cells. Improper regulation of CIL has been implicated in cancer cell dissemination. Here, we identify the cell adhesion molecule JAM-A as a central regulator of CIL in tumor cells. JAM-A is part of a multimolecular signaling complex in which tetraspanins CD9 and CD81 link JAM-A to αvß5 integrin. JAM-A binds Csk and inhibits the activity of αvß5 integrin-associated Src. Loss of JAM-A results in increased activities of downstream effectors of Src, including Erk1/2, Abi1, and paxillin, as well as increased activity of Rac1 at cell-cell contact sites. As a consequence, JAM-A-depleted cells show increased motility, have a higher cell-matrix turnover, and fail to halt migration when colliding with other cells. We also find that proper regulation of CIL depends on αvß5 integrin engagement. Our findings identify a molecular mechanism that regulates CIL in tumor cells and have implications on tumor cell dissemination.


Assuntos
Inibição de Contato , Adesão Celular , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Movimento Celular , Inibição de Contato/genética , Receptores de Vitronectina , Tetraspaninas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA