Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurosci Lett ; 827: 137735, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38513935

RESUMO

Patients with post-stroke hemiplegia often exhibit reduced ability to maintain sitting balance, a crucial factor for predicting prognosis. Galvanic vestibular stimulation (GVS) influences postural control by stimulating vestibular organ. Although several studies have focused on GVS in static postures, no studies have demonstrated the influence of GVS on righting reactions. Therefore, we aimed to investigate the effects of GVS on postural righting reactions in seated patients with stroke-induced hemiplegia. Using a vertical board (VB), righting reactions were induced by tilting the VB at 10° after patients sat for 1 min. Patients adjusted their bodies until feeling vertical upon prompt. Twenty-two left hemiplegic patients with cerebrovascular disease participated, divided into two groups undergoing right cathode GVS (RC-GVS) followed by left cathode GVS or vice versa, preceded by sham stimulation. Centre of pressure and the joint angle were measured. During the postural righting reactions towards the paralysed side, RC-GVS enhanced the righting reactions and moved the mean position on the x-axis (COPx) to the right and the mean position on the y-axis (COPy) to the front. During the postural righting reaction towards the right side, RC-GVS induced resistance against the righting reaction, COPx was deflected to the right, COPy was deflected backward, and the angle of the neck tilt increased. The findings revealed that GVS with anodal stimulation on the paralysed side could promote righting reactions in patients with post-stroke hemiplegia. SIGNIFICANCE STATEMENT: The study findings suggest that using the contralesional placement of the anode promotes righting reactions, and galvanic vestibular stimulation can induce joint movements in the neck and trunk by polarising it to act as resistance against righting reactions.


Assuntos
Acidente Vascular Cerebral , Vestíbulo do Labirinto , Humanos , Hemiplegia/etiologia , Vestíbulo do Labirinto/fisiologia , Movimento , Equilíbrio Postural/fisiologia , Acidente Vascular Cerebral/complicações , Estimulação Elétrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA