Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 683: 149112, 2023 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-37857165

RESUMO

Human origin recognition complex (hORC) binds to the DNA replication origin and then initiates DNA replication. However, hORC does not exhibit DNA sequence-specificity and how hORC recognizes the replication origin on genomic DNA remains elusive. Previously, we found that hORC recognizes G-quadruplex structures potentially formed near the replication origin. Then, we showed that hORC subunit 1 (hORC1) preferentially binds to G-quadruplex DNAs using a hORC1 construct comprising residues 413 to 511 (hORC1413-511). Here, we investigate the structural characteristics of hORC1413-511 in its free and complex forms with G-quadruplex DNAs. Circular dichroism and nuclear magnetic resonance (NMR) spectroscopic studies indicated that hORC1413-511 is disordered except for a short α-helical region in both the free and complex forms. NMR chemical shift perturbation (CSP) analysis suggested that basic residues, arginines and lysines, and polar residues, serines and threonines, are involved in the G-quadruplex DNA binding. Then, this was confirmed by mutation analysis. Interestingly, CSP analysis indicated that hORC1413-511 binds to both parallel- and (3 + 1)-type G-quadruplex DNAs using the same residues, and thereby in the same manner. Our study suggests that hORC1 uses its intrinsically disordered G-quadruplex binding region to recognize parallel-type and (3 + 1)-type G-quadruplex structures at replication origin.


Assuntos
Quadruplex G , Humanos , Complexo de Reconhecimento de Origem/metabolismo , DNA/química , Espectroscopia de Ressonância Magnética , Replicação do DNA , Dicroísmo Circular
2.
Int J Mol Sci ; 22(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801762

RESUMO

Origin recognition complex (ORC) binds to replication origins in eukaryotic DNAs and plays an important role in replication. Although yeast ORC is known to sequence-specifically bind to a replication origin, how human ORC recognizes a replication origin remains unknown. Previous genome-wide studies revealed that guanine (G)-rich sequences, potentially forming G-quadruplex (G4) structures, are present in most replication origins in human cells. We previously suggested that the region comprising residues 413-511 of human ORC subunit 1, hORC1413-511, binds preferentially to G-rich DNAs, which form a G4 structure in the absence of hORC1413-511. Here, we investigated the interaction of hORC1413-511 with various G-rich DNAs derived from human c-myc promoter and telomere regions. Fluorescence anisotropy revealed that hORC1413-511 binds preferentially to DNAs that have G4 structures over ones having double-stranded structures. Importantly, circular dichroism (CD) and nuclear magnetic resonance (NMR) showed that those G-rich DNAs retain the G4 structures even after binding with hORC1413-511. NMR chemical shift perturbation analyses revealed that the external G-tetrad planes of the G4 structures are the primary binding sites for hORC1413-511. The present study suggests that human ORC1 may recognize replication origins through the G4 structure.


Assuntos
DNA/genética , Quadruplex G , Complexo de Reconhecimento de Origem , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética , Telômero/ultraestrutura , Sítios de Ligação , Replicação do DNA , Polarização de Fluorescência , Humanos , Espectroscopia de Ressonância Magnética , Fases de Leitura Aberta , Complexo de Reconhecimento de Origem/genética , Ligação Proteica , Origem de Replicação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA