Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microvasc Res ; 154: 104686, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38614154

RESUMO

Pulmonary hypertension (PH) is a chronic, progressive condition in which respiratory muscle dysfunction is a primary contributor to exercise intolerance and dyspnea in patients. Contractile function, blood flow distribution, and the hyperemic response are altered in the diaphragm with PH, and we sought to determine whether this may be attributed, in part, to impaired vasoreactivity of the resistance vasculature. We hypothesized that there would be blunted endothelium-dependent vasodilation and impaired myogenic responsiveness in arterioles from the diaphragm of PH rats. Female Sprague-Dawley rats were randomized into healthy control (HC, n = 9) and monocrotaline-induced PH rats (MCT, n = 9). Endothelium-dependent and -independent vasodilation and myogenic responses were assessed in first-order arterioles (1As) from the medial costal diaphragm in vitro. There was a significant reduction in endothelium-dependent (via acetylcholine; HC, 78 ± 15% vs. MCT, 47 ± 17%; P < 0.05) and -independent (via sodium nitroprusside; HC, 89 ± 10% vs. MCT, 66 ± 10%; P < 0.05) vasodilation in 1As from MCT rats. MCT-induced PH also diminished myogenic constriction (P < 0.05) but did not alter passive pressure responses. The diaphragmatic weakness, impaired hyperemia, and blood flow redistribution associated with PH may be due, in part, to diaphragm vascular dysfunction and thus compromised oxygen delivery which occurs through both endothelium-dependent and -independent mechanisms.

2.
Arterioscler Thromb Vasc Biol ; 44(5): 1101-1113, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38545783

RESUMO

BACKGROUND: Much of what we know about insulin resistance is based on studies from metabolically active tissues such as the liver, adipose tissue, and skeletal muscle. Emerging evidence suggests that the vascular endothelium plays a crucial role in systemic insulin resistance; however, the underlying mechanisms remain incompletely understood. Arf6 (ADP ribosylation factor 6) is a small GTPase that plays a critical role in endothelial cell function. Here, we tested the hypothesis that the deletion of endothelial Arf6 will result in systemic insulin resistance. METHODS: We used mouse models of constitutive endothelial cell-specific Arf6 deletion (Arf6f/- Tie2Cre+) and tamoxifen-inducible Arf6 knockout (Arf6f/f Cdh5CreER+). Endothelium-dependent vasodilation was assessed using pressure myography. Metabolic function was assessed using a battery of metabolic assessments including glucose and insulin tolerance tests and hyperinsulinemic-euglycemic clamps. We used a fluorescence microsphere-based technique to measure tissue blood flow. Skeletal muscle capillary density was assessed using intravital microscopy. RESULTS: Endothelial Arf6 deletion impaired insulin-stimulated vasodilation in white adipose tissue and skeletal muscle feed arteries. The impairment in vasodilation was primarily due to attenuated insulin-stimulated nitric oxide bioavailability but independent of altered acetylcholine-mediated or sodium nitroprusside-mediated vasodilation. Endothelial cell-specific deletion of Arf6 also resulted in systematic insulin resistance in normal chow-fed mice and glucose intolerance in high-fat diet-fed obese mice. The underlying mechanisms of glucose intolerance were reductions in insulin-stimulated blood flow and glucose uptake in the skeletal muscle and were independent of changes in capillary density or vascular permeability. CONCLUSIONS: Results from this study support the conclusion that endothelial Arf6 signaling is essential for maintaining insulin sensitivity. Reduced expression of endothelial Arf6 impairs insulin-mediated vasodilation and results in systemic insulin resistance. These results have therapeutic implications for diseases that are associated with endothelial cell dysfunction and insulin resistance such as diabetes.


Assuntos
Fator 6 de Ribosilação do ADP , Endotélio , Resistência à Insulina , Músculo Esquelético , Camundongos , Fator 6 de Ribosilação do ADP/genética , Fator 6 de Ribosilação do ADP/metabolismo , Endotélio/metabolismo , Camundongos Endogâmicos C57BL , Intolerância à Glucose , Tamoxifeno , Camundongos Knockout , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Obesidade/metabolismo , Obesidade/patologia , Glucose/metabolismo , Dieta Hiperlipídica , Camundongos Obesos , Vasodilatação
3.
bioRxiv ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37205339

RESUMO

Background: Much of what we know about insulin resistance is based on studies from metabolically active tissues such as liver, adipose tissue, and skeletal muscle. Emerging evidence suggests that the vascular endothelium plays a crucial role in systemic insulin resistance, however, the underlying mechanisms remain incompletely understood. ADP ribosylation factor 6 (Arf6) is a small GTPase that plays a critical role in endothelial cell (EC) function. Here, we tested the hypothesis that the deletion of endothelial Arf6 will result in systemic insulin resistance. Methods: We used mouse models of constitutive EC-specific Arf6 deletion (Arf6 f/- Tie2Cre) and tamoxifen inducible Arf6 knockout (Arf6 f/f Cdh5Cre). Endothelium-dependent vasodilation was assessed using pressure myography. Metabolic function was assessed using a battery of metabolic assessments including glucose- and insulin-tolerance tests and hyperinsulinemic-euglycemic clamps. A fluorescence microsphere-based technique was used to measure tissue blood flow. Intravital microscopy was used to assess skeletal muscle capillary density. Results: Endothelial Arf6 deletion impaired insulin-stimulated vasodilation in white adipose tissue (WAT) and skeletal muscle feed arteries. The impairment in vasodilation was primarily due to attenuated insulin-stimulated nitric oxide (NO) bioavailability but independent of altered acetylcholine- or sodium nitroprusside-mediated vasodilation. In vitro Arf6 inhibition resulted in suppressed insulin stimulated phosphorylation of Akt and endothelial NO synthase. Endothelial cell-specific deletion of Arf6 also resulted in systematic insulin resistance in normal chow fed mice and glucose intolerance in high fat diet fed obese mice. The underlying mechanisms of glucose intolerance were reductions in insulin-stimulated blood flow and glucose uptake in the skeletal muscle and were independent of changes in capillary density or vascular permeability. Conclusion: Results from this study support the conclusion that endothelial Arf6 signaling is essential for maintaining insulin sensitivity. Reduced expression of endothelial Arf6 impairs insulin-mediated vasodilation and results in systemic insulin resistance. These results have therapeutic implications for diseases that are associated with endothelial cell dysfunction and insulin resistance such as diabetes.

4.
Front Physiol ; 14: 1281715, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38187132

RESUMO

Pulmonary hypertension (PH) is characterized by pulmonary vascular remodeling, respiratory muscle and cardiac impairments, and exercise intolerance. Specifically, impaired gas exchange increases work of the diaphragm; however, compromised contractile function precludes the diaphragm from meeting the increased metabolic demand of chronic hyperventilation in PH. Given that muscle contractile function is in part, dependent upon adequate blood flow (Q˙), diaphragmatic dysfunction may be predicated by an inability to match oxygen delivery with oxygen demand. We hypothesized that PH rats would demonstrate a decreased hyperemic response to contractions compared to healthy controls. Methods: Sprague-Dawley rats were randomized into healthy (HC, n = 7) or PH (n = 7) groups. PH rats were administered monocrotaline (MCT) while HC rats received vehicle. Disease progression was monitored via echocardiography. Regional and total diaphragm blood flow and vascular conductance at baseline and during 3 min of electrically-stimulated contractions were determined using fluorescent microspheres. Results: PH rats displayed morphometric and echocardiographic criteria for disease (i.e., acceleration time/ejection time, right ventricular hypertrophy). In all rats, total costal diaphragm Q˙ increased during contractions and did not differ between groups. In HC rats, there was a greater increase in medial costal Q˙ compared to PH rats (55% ± 3% vs. 44% ± 4%, p < 0.05), who demonstrated a redistribution of Q˙ to the ventral costal region. Conclusion: These findings support a redistribution of regional diaphragm perfusion and an impaired medial costal hyperemic response in PH, suggesting that PH alters diaphragm vascular function and oxygen delivery, providing a potential mechanism for PH-induced diaphragm contractile dysfunction.

5.
Physiol Rep ; 10(24): e15548, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36564177

RESUMO

Solid tumors contain hypoxic regions that contribute to anticancer therapy resistance. Thus, mitigating tumor hypoxia may enhance the efficacy of radiation therapy which is commonly utilized for patients with prostate cancer. Increasing perfusion pressure in the prostate with head-up tilt (HUT) may augment prostate tumor perfusion and decrease hypoxia. The purpose of this study was to determine if an increase in the vascular hydrostatic gradient via 70° HUT increases tumor perfusion and decreases tumor hypoxia in a preclinical orthotopic model of prostate cancer. Male Copenhagen rats (n = 17) were orthotopically injected with Dunning R-3327 (AT-1) prostate adenocarcinoma cells to induce prostate tumors. After tumors were established, prostate tumor perfusion and hypoxia were measured in rats during level (0°) and 70° HUT positions. To compare the magnitude of the hydrostatic column to that present in humans, ultrasound was used to measure the heart to prostate distance in male human subjects to estimate the prostate vascular hydrostatic pressure with the upright posture. In young rats, no differences were detected in prostate tumor perfusion or prostate tumor hypoxia with 70° HUT versus the level position. However, from the retrospective study, young rats increased prostate vascular resistance to HUT, whereas aged rats lacked this response. Tumor vessels co-opted from existing functional vasculature in young rats may be sufficient to negate increases in perfusion pressure with HUT seen in aged rats. Additionally, in humans, the estimated hydrostatic column at the level of the prostate is five times greater than that of the rat. Therefore, 70° HUT may elicit increases in prostate/prostate tumor blood flow in humans that is not seen in rats.


Assuntos
Hemodinâmica , Neoplasias da Próstata , Humanos , Masculino , Ratos , Animais , Estudos Retrospectivos , Hipóxia , Perfusão , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia
7.
J Appl Physiol (1985) ; 132(5): 1190-1200, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35323060

RESUMO

During mechanical ventilation (MV), supplemental oxygen (O2) is commonly administered to critically ill patients to combat hypoxemia. Previous studies demonstrate that hyperoxia exacerbates MV-induced diaphragm oxidative stress and contractile dysfunction. Whereas normoxic MV (i.e., 21% O2) diminishes diaphragm perfusion and O2 delivery in the quiescent diaphragm, the effect of MV with 100% O2 is unknown. We tested the hypothesis that MV supplemented with hyperoxic gas (100% O2) would increase diaphragm vascular resistance and reduce diaphragmatic blood flow and O2 delivery to a greater extent than MV alone. Female Sprague-Dawley rats (4-6 mo) were randomly divided into two groups: 1) MV + 100% O2 followed by MV + 21% O2 (n = 9) or 2) MV + 21% O2 followed by MV + 100% O2 (n = 10). Diaphragmatic blood flow (mL/min/100 g) and vascular resistance were determined, via fluorescent microspheres, during spontaneous breathing (SB), MV + 100% O2, and MV + 21% O2. Compared with SB, total diaphragm vascular resistance was increased, and blood flow was decreased with both MV + 100% O2 and MV + 21% O2 (all P < 0.05). Medial costal diaphragmatic blood flow was lower with MV + 100% O2 (26 ± 6 mL/min/100 g) versus MV + 21% O2 (51 ± 15 mL/min/100 g; P < 0.05). Second, the addition of 100% O2 during normoxic MV exacerbated the MV-induced reductions in medial costal diaphragm perfusion (23 ± 7 vs. 51 ± 15 mL/min/100 g; P < 0.05) and O2 delivery (3.4 ± 0.2 vs. 6.4 ± 0.3 mL O2/min/100 g; P < 0.05). These data demonstrate that administration of supplemental 100% O2 during MV increases diaphragm vascular resistance and diminishes perfusion and O2 delivery to a significantly greater degree than normoxic MV. This suggests that prolonged bouts of MV (i.e., 6 h) with hyperoxia may accelerate MV-induced vascular dysfunction in the quiescent diaphragm and potentially exacerbate downstream contractile dysfunction.NEW & NOTEWORTHY This is the first study, to our knowledge, demonstrating that supplemental oxygen (i.e., 100% O2) during mechanical ventilation (MV) augments the MV-induced reductions in diaphragmatic blood flow and O2 delivery. The accelerated reduction in diaphragmatic blood flow with hyperoxic MV would be expected to potentiate MV-induced diaphragm vascular dysfunction and consequently, downstream contractile dysfunction. The data presented herein provide a putative mechanism for the exacerbated oxidative stress and diaphragm dysfunction reported with prolonged hyperoxic MV.


Assuntos
Diafragma , Oxigênio , Respiração Artificial , Animais , Diafragma/fisiologia , Feminino , Oxigênio/administração & dosagem , Ratos , Ratos Sprague-Dawley , Respiração Artificial/métodos
8.
Microvasc Res ; 141: 104334, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35104507

RESUMO

Pulmonary hypertension (PH) has previously been characterized as a disease of the pulmonary vasculature that subsequently results in myocardial dysfunction. Heart failure compromises skeletal muscle microvascular function, which contributes to exercise intolerance. Therefore, we tested the hypothesis that such changes might be present in PH. Thus, we investigated skeletal muscle oxygen (O2) transport in the rat model of PH to determine if O2 delivery (Q̇O2) is impaired at the level of the microcirculation as evidenced via reduced red blood cell (RBC) flux, velocity, hematocrit, and percentage of capillaries flowing in quiescent muscle. Adult male Sprague-Dawley rats were randomized into healthy (n = 9) and PH groups (n = 9). Progressive PH was induced via a one-time intraperitoneal injection of monocrotaline (MCT; 50 mg/kg) and rats were monitored weekly via echocardiography. Intravital microscopy in the spinotrapezius muscle was performed when echocardiograms confirmed moderate PH (preceding right ventricular (RV) failure). At 25 ± 9 days post-MCT, PH rats displayed RV hypertrophy (RV/(Left ventricle + Septum): 0.28 ± 0.05 vs. 0.44 ± 0.11), pulmonary congestion, and increased right ventricular systolic pressure (21 ± 8 vs. 55 ± 14 mm Hg) compared to healthy rats (all P < 0.05). Reduced capillary RBC velocity (403 ± 140 vs. 227 ± 84 µm/s; P = 0.01), RBC flux (33 ± 12 vs. 23 ± 5 RBCs/s; P = 0.04) and % of capillaries supporting continuous RBC flux at rest (79 ± 8 vs. 56 ± 13%; P = 0.01) were evident in PH rats compared to healthy rats. When Q̇O2 within a given field of view was quantified (RBC flux x % of capillaries supporting continuous RBC flux), PH rats demonstrated lower overall Q̇O2 (↓ 50%; P = 0.002). These data support that microcirculatory hemodynamic impairments (↓ Q̇O2 and therefore altered Q̇O2-to-V̇O2 matching) may compromise blood-myocyte O2 transport in PH. The mechanistic bases for decreased capillary RBC flux, velocity, and percentage of capillaries supporting RBC flow remains an important topic.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Animais , Hemodinâmica , Hipertensão Pulmonar/induzido quimicamente , Masculino , Microcirculação , Músculo Esquelético/irrigação sanguínea , Oxigênio , Ratos , Ratos Sprague-Dawley
9.
Microvasc Res ; 140: 104283, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34822837

RESUMO

Post-occlusive reactive hyperemia (PORH) is an accepted diagnostic tool for assessing peripheral macrovascular function. While conduit artery hemodynamics have been well defined, the impact of PORH on capillary hemodynamics remains unknown, despite the microvasculature being the dominant site of vascular control. Therefore, the purpose of this investigation was to determine the effects of 5 min of feed artery occlusion on capillary hemodynamics in skeletal muscle. We tested the hypothesis that, upon release of arterial occlusion, there would be: 1) an increased red blood cell flux (fRBC) and red blood cell velocity (VRBC), and 2) a decreased proportion of capillaries supporting RBC flow compared to the pre-occlusion condition. METHODS: In female Sprague-Dawley rats (n = 6), the spinotrapezius muscle was exteriorized for evaluation of capillary hemodynamics pre-occlusion, 5 min of feed artery occlusion (Occ), and 5 min of reperfusion (Post-Occ). RESULTS: There were no differences in mean arterial pressure (MAP) or capillary diameter (Dc) between pre-occlusion and post-occlusion (P > 0.05). During 30 s of PORH, capillary fRBC was increased (pre: 59 ± 4 vs. 30 s-post: 77 ± 2 cells/s; P < 0.05) and VRBC was not changed (pre: 300 ± 24 vs. 30 s post: 322 ± 25 µm/s; P > 0.05). Capillary hematocrit (Hctcap) was unchanged across the pre- to post-occlusion conditions (P > 0.05). Following occlusion, there was a 20-30% decrease in the number of capillaries supporting RBC flow at 30 s and 300 s-post occlusion (pre: 92 ± 2%; 30 s-post: 66 ± 3%; 300 s-post: 72 ± 6%; both P < 0.05). CONCLUSION: Short-term feed artery occlusion (i.e. 5 min) resulted in a more heterogeneous capillary flow profile with the presence of capillary no-reflow, decreasing the percentage of capillaries supporting RBC flow. A complex interaction between myogenic and metabolic mechanisms at the arteriolar level may play a role in the capillary no-reflow with PORH. Measurements at the level of the conduit artery mask significant alterations in blood flow distribution in the microcirculation.


Assuntos
Capilares/fisiopatologia , Hemodinâmica , Hiperemia/fisiopatologia , Microcirculação , Músculo Esquelético/irrigação sanguínea , Animais , Velocidade do Fluxo Sanguíneo , Capilares/metabolismo , Eritrócitos/metabolismo , Feminino , Hiperemia/sangue , Microscopia Intravital , Microscopia de Vídeo , Músculo Esquelético/metabolismo , Fenômeno de não Refluxo/sangue , Fenômeno de não Refluxo/fisiopatologia , Ratos Sprague-Dawley , Fatores de Tempo
10.
Nitric Oxide ; 119: 1-8, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871799

RESUMO

In heart failure with reduced ejection fraction (HFrEF), nitric oxide-soluble guanylyl cyclase (sGC) pathway dysfunction impairs skeletal muscle arteriolar vasodilation and thus capillary hemodynamics, contributing to impaired oxygen uptake (V̇O2) kinetics. Targeting this pathway with sGC activators offers a new treatment approach to HFrEF. We tested the hypotheses that sGC activator administration would increase the O2 delivery (Q̇O2)-to-V̇O2 ratio in the skeletal muscle interstitial space (PO2is) of HFrEF rats during twitch contractions due, in part, to increases in red blood cell (RBC) flux (fRBC), velocity (VRBC), and capillary hematocrit (Hctcap). HFrEF was induced in male Sprague-Dawley rats via myocardial infarction. After 3 weeks, rats were treated with 0.3 mg/kg of the sGC activator BAY 60-2770 (HFrEF + BAY; n = 11) or solvent (HFrEF; n = 9) via gavage b.i.d for 5 days prior to phosphorescence quenching (PO2is, in contracting muscle) and intravital microscopy (resting) measurements in the spinotrapezius muscle. Intravital microscopy revealed higher fRBC (70 ± 9 vs 25 ± 8 RBC/s), VRBC (490 ± 43 vs 226 ± 35 µm/s), Hctcap (16 ± 1 vs 10 ± 1%) and a greater number of capillaries supporting flow (91 ± 3 vs 82 ± 3%) in HFrEF + BAY vs HFrEF (all P < 0.05). Additionally, PO2is was especially higher during 12-34s of contractions in HFrEF + BAY vs HFrEF (P < 0.05). Our findings suggest that sGC activators improved resting Q̇O2 via increased fRBC, VRBC, and Hctcap allowing for better Q̇O2-to-V̇O2 matching during the rest-contraction transient, supporting sGC activators as a potential therapeutic to target skeletal muscle vasomotor dysfunction in HFrEF.


Assuntos
Benzoatos/farmacologia , Compostos de Bifenilo/farmacologia , Capilares/metabolismo , Insuficiência Cardíaca/sangue , Hidrocarbonetos Fluorados/farmacologia , Músculo Esquelético/metabolismo , Oxigênio/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Animais , Monitorização Transcutânea dos Gases Sanguíneos , Hemodinâmica , Masculino , Ratos Sprague-Dawley
11.
Sci Adv ; 7(39): eabf5073, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34550735

RESUMO

The COVID-19 pandemic resulted in extraordinary declines in human mobility, which, in turn, may affect wildlife. Using records of more than 4.3 million birds observed by volunteers from March to May 2017­2020 across Canada and the United States, we found that counts of 66 (80%) of 82 focal bird species changed in pandemic-altered areas, usually increasing in comparison to prepandemic abundances in urban habitat, near major roads and airports, and in counties where lockdowns were more pronounced or occurred at the same time as peak bird migration. Our results indicate that human activity affects many of North America's birds and suggest that we could make urban spaces more attractive to birds by reducing traffic and mitigating the disturbance from human transportation after we emerge from the pandemic.

12.
Microcirculation ; 28(8): e12727, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34467606

RESUMO

INTRODUCTION: Prolonged mechanical ventilation (MV; ≥6 h) results in large, time-dependent reductions in diaphragmatic blood flow and shear stress. We tested the hypothesis that MV would impair the structural and material properties (ie, increased stress/stretch relation and/or circumferential stretch) of first-order arterioles (1A) from the medial costal diaphragm. METHODS: Shear stress was estimated from isolated arterioles and prior blood flow data from the diaphragm during spontaneous breathing (SB) and prolonged MV (6 h MV). Thereafter, female Sprague-Dawley rats (~5 months) were randomly divided into two groups, SB (n = 6) and 6 h MV (n = 6). Following SB and 6 h MV, 1A medial costal diaphragm arterioles were isolated, cannulated, and subjected to stepwise (0-140 cmH2 O) increases in intraluminal pressure in calcium-free Ringer's solution. Inner diameter and wall thickness were measured at each pressure step and used to calculate wall:lumen ratio, Cauchy-stress, and circumferential stretch. RESULTS: Compared to SB, there was a ~90% reduction in arteriolar shear stress with prolonged MV (9 ± 2 vs 78 ± 20 dynes/cm2 ; p ≤ .05). In the unloaded condition (0 cmH2 O), the arteriolar intraluminal diameter was reduced (37 ± 8 vs 79 ± 13 µm) and wall:lumen ratio was increased (120 ± 18 vs 46 ± 10%) compared to SB (p ≤ .05). There were no differences in the passive diameter responses or the circumferential stress/stretch relationship between groups (p > .05), but at each pressure step, circumferential stretch was increased with 6 h MV vs SB (p ≤ .05). CONCLUSION: During prolonged MV, medial costal diaphragm arteriolar shear stress is severely diminished. Despite no change in the material behavior (stress/stretch), prolonged MV resulted in altered structural and mechanical properties (ie, elevated circumferential stretch) of medial costal diaphragm arterioles. This provides important novel mechanistic insights into the impaired diaphragm blood flow capacity and vascular dysfunction following prolonged MV.


Assuntos
Diafragma , Respiração Artificial , Animais , Arteríolas , Diafragma/fisiologia , Feminino , Contração Muscular/fisiologia , Ratos , Ratos Sprague-Dawley , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Ventiladores Mecânicos
13.
Exp Physiol ; 106(10): 2070-2082, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34469618

RESUMO

NEW FINDINGS: What is the central question of this study? Does impairment in the dynamics of O2 transport in skeletal muscle during a series of contractions constitute a potential mechanism underlying reduced exercise capacity in pulmonary hypertension? What is the main finding and its importance? Pulmonary hypertension compromises the dynamic matching of skeletal muscle O2 delivery-to-utilization following contraction onset in the rat spinotrapezius muscle. These results implicate a role for vascular dysfunction in the slow V̇O2 kinetics and exercise intolerance present in pulmonary hypertension. ABSTRACT: Pulmonary hypertension (PH) is characterized by pulmonary vascular dysfunction and exercise intolerance due, in part, to compromised pulmonary and cardiac function. We tested the hypothesis that there are peripheral (i.e., skeletal muscle) aberrations in O2 delivery ( Q̇O2 )-to-O2 utilization ( V̇O2 ) matching and vascular control that might help to explain poor exercise tolerance in PH. Furthermore, we investigated the peripheral effects of nitric oxide (NO) in attenuating these decrements. Male Sprague-Dawley rats (n = 21) were administered monocrotaline (MCT; 50 mg/kg, i.p.) to induce PH. Disease progression was monitored via echocardiography. Phosphorescence quenching determined the O2 partial pressure in the interstitial space ( PO2is ) in the spinotrapezius muscle at rest and during contractions under control (SNP-) and NO-donor (sodium nitroprusside, SNP+) conditions. MCT rats displayed right ventricular (RV) hypertrophy (right ventricle/(left ventricle + septum): 0.44 (0.13) vs. 0.28 (0.05)), pulmonary congestion, increased RV systolic pressure (48 (18) vs. 20 (8) mmHg) and arterial hypoxaemia ( PaO2 : 64 (9) vs. 82 (9) mmHg) compared to healthy controls (HC) (P < 0.05). PO2is was significantly lower in MCT rats during the first 30 s of SNP- contractions. SNP superfusion elevated PO2is in both groups; however, MCT rats demonstrated a lower PO2is throughout SNP+ contractions versus HC (P < 0.05). Thus, for small muscle mass exercise in MCT rats, muscle oxygenation is impaired across the rest-to-contractions transition and exogenous NO does not raise the Q̇O2 -to- V̇O2 ratio in contracting muscle to the same levels as HC. These data support muscle Q̇O2 -to- V̇O2 mismatch as a potential contributor to slow V̇O2 kinetics and therefore exercise intolerance in PH and suggest peripheral vascular dysfunction or remodelling as a possible mechanism.


Assuntos
Hipertensão Pulmonar , Oxigênio , Animais , Hipertensão Pulmonar/metabolismo , Masculino , Contração Muscular , Músculo Esquelético/fisiologia , Oxigênio/metabolismo , Consumo de Oxigênio , Ratos , Ratos Sprague-Dawley
14.
J Physiol ; 599(13): 3279-3293, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34101850

RESUMO

KEY POINTS: Inhibition of pancreatic ATP-sensitive K+ (KATP ) channels is the intended effect of oral sulphonylureas to increase insulin release in diabetes. However, pertinent to off-target effects of sulphonylurea medication, sex differences in cardiac KATP channel function exist, whereas potential sex differences in vascular KATP channel function remain unknown. In the present study, we assessed vascular KATP channel function (topical glibenclamide superfused onto fast-twitch oxidative skeletal muscle) supporting blood flow and interstitial O2 delivery-utilization matching ( PO2 is) during twitch contractions in male, female during pro-oestrus and ovariectomized female (F+OVX) rats. Glibenclamide decreased blood flow (convective O2 transport) and interstitial PO2 in male and female, but not F+OVX, rats. Compared to males, females also demonstrated impaired diffusive O2 transport and a faster fall in interstitial PO2 . Our demonstration, in rats, that sex differences in vascular KATP channel function exist support the tentative hypothesis that oral sulphonylureas may exacerbate exercise intolerance and morbidity, especially in premenopausal females. ABSTRACT: Vascular ATP-sensitive K+ (KATP ) channels support skeletal muscle blood flow ( Q̇m ), interstitial O2 delivery ( Q̇O2 )-utilization ( V̇O2 ) matching (i.e. interstitial-myocyte O2 flux driving pressure; PO2 is) and exercise tolerance. Potential sex differences in skeletal muscle vascular KATP channel function remain largely unexplored. We hypothesized that local skeletal muscle KATP channel inhibition via glibenclamide superfusion (5 mg kg-1 GLI; sulphonylurea diabetes medication) in anaesthetized female Sprague-Dawley rats, compared to males, would demonstrate greater reductions in contracting (1 Hz, 7 V, 180 s) fast-twitch oxidative mixed gastrocnemius (97% type IIA+IID/X+IIB) Q̇m (15 µm microspheres) and PO2 is (phosphorescence quenching), resulting from more compromised convective ( Q̇O2 ) and diffusive ( DO2  ) O2 conductances. Furthermore, these GLI-induced reductions in ovary-intact females measured during pro-oestrus would be diminished following ovariectomy (F+OVX). GLI similarly impaired mixed gastrocnemius V̇O2 in both males (↓28%) and females (↓33%, both P < 0.032) via reduced Q̇m (male: ↓31%, female: ↓35%, both P < 0.020), Q̇O2 (male: 5.6 ± 0.5 vs. 4.0 ± 0.5, female: 6.4 ± 1.1 vs. 4.2 ± 0.6 mL O2  min-1 100 g tissue-1 , P < 0.022) and the resulting PO2 is, with females also demonstrating a reduced DO2  (0.40 ± 0.07 vs. 0.30 ± 0.04 mL O2  min-1 100 g tissue-1 , P < 0.042) and a greater GLI-induced speeding of PO2 is fall (mean response time: Sex × Drug interaction, P = 0.026). Conversely, GLI did not impair the mixed gastrocnemius of F+OVX rats. Therefore, in patients taking sulphonylureas, these results support the potential for impaired vascular KATP channel function to compromise muscle Q̇m and therefore exercise tolerance. Such an effect, if present, would likely contribute to adverse cardiovascular events in premenopausal females more than males.


Assuntos
Contração Muscular , Caracteres Sexuais , Trifosfato de Adenosina/metabolismo , Animais , Feminino , Humanos , Masculino , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Ratos , Ratos Sprague-Dawley
15.
Am J Transl Res ; 13(1): 197-209, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33527018

RESUMO

BACKGROUND: Recent evidence suggests prostate cancer independent of treatment has atrophic effects on whole heart and left ventricular (LV) masses, associated with reduced endurance exercise capacity. In a pre-clinical model, we tested the hypothesis that high-intensity training could prevent cardiac atrophy with prostate cancer and alter cardiac protein degradation mechanisms. METHODS: Dunning R-3327 AT-1 prostate cancer cells (1×105) were injected into the ventral prostate lobe of 5-6 mo immunocompetent Copenhagen rats (n=24). These animals were randomized into two groups, tumor-bearing exercise (TBEX, n=15) or tumor bearing sedentary (TBS, n=9). Five days after surgery, TBEX animals began exercise on a treadmill (25 m/min, 15° incline) for 45-60 min/day for 18±2 days. Pre-surgery (Pre), and post-exercise training (Post) echocardiographic evaluation (Vivid S6, GE Health Care), using the parasternal short axis view, was used to examine ventricle dimensions. Markers of protein degradation (muscle atrophy F-box, Cathepsin B, Cathepsin L) in the left ventricle were semi-quantified via Western Blot. RESULTS: There were no significant differences in tumor mass between groups (TBEX 3.4±0.7, TBS 2.8±0.6 g, P=0.3), or body mass (TBEX 317±5, TBS 333±7 g, P=0.2). Heart-to-body mass ratio was lower in TBS group compared to TBEX (2.3±0.1 vs. 2.5±0.1 mg/g, P<0.05). LV/body mass ratio was also lower in the TBS group (1.6±0.1 vs. 1.8±0.1 mg/g, P<0.05). From Pre-Post, TBEX had significant increases in SV (~20% P<0.05) whereas TBS had no significant change. There were no significant differences between groups for markers of protein degradation. CONCLUSION: This study suggests that high-intensity exercise can improve LV function and increase LV mass concurrent with prostate cancer development, versus sedentary counterparts. Given cardiac dysfunction often manifests with conventional anti-cancer treatments, a short-term high-intensity training program, prior to treatment, may improve cardiac function and fatigue resistance in cancer patients.

16.
J Appl Physiol (1985) ; 129(3): 626-635, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32730173

RESUMO

Although mechanical ventilation (MV) is a life-saving intervention, prolonged MV can lead to deleterious effects on diaphragm function, including vascular incompetence and weaning failure. During MV, positive end-expiratory pressure (PEEP) is used to maintain small airway patency and mitigate alveolar damage. We tested the hypothesis that increased intrathoracic pressure with high levels of PEEP would increase diaphragm vascular resistance and decrease perfusion. Female Sprague-Dawley rats (~6 mo) were randomly divided into two groups receiving low PEEP (1 cmH2O; n = 10) or high PEEP (9 cmH2O; n = 9) during MV. Blood flow, via fluorescent microspheres, was determined during spontaneous breathing (SB), low-PEEP MV, high-PEEP MV, low-PEEP MV + surgical laparotomy (LAP), and high-PEEP MV + pneumothorax (PTX). Compared with SB, both low-PEEP MV and high-PEEP MV increased total diaphragm and medial costal vascular resistance (P ≤ 0.05) and reduced total and medial costal diaphragm blood flow (P ≤ 0.05). Also, during MV medial costal diaphragm vascular resistance was greater and blood flow lower with high-PEEP MV vs. low-PEEP MV (P ≤ 0.05). Diaphragm perfusion with high-PEEP MV+PTX and low-PEEP MV were not different (P > 0.05). The reduced total and medial costal diaphragmatic blood flow with low-PEEP MV appears to be independent of intrathoracic pressure changes and is attributed to increased vascular resistance and diaphragm quiescence. Mechanical compression of the diaphragm vasculature may play a role in the lower diaphragmatic blood flow at higher levels of PEEP. These reductions in blood flow to the quiescent diaphragm during MV could predispose critically ill patients to weaning complications.NEW & NOTEWORTHY This is the first study, to our knowledge, demonstrating that mechanical ventilation, with low and high positive-end expiratory pressure (PEEP), increases vascular resistance and reduces total and regional diaphragm perfusion. The rapid reduction in diaphragm perfusion and increased vascular resistance may initiate a cascade of events that predispose the diaphragm to vascular and thus contractile dysfunction with prolonged mechanical ventilation.


Assuntos
Diafragma , Respiração Artificial , Animais , Feminino , Humanos , Respiração com Pressão Positiva , Ratos , Ratos Sprague-Dawley , Respiração Artificial/efeitos adversos , Resistência Vascular
17.
J Appl Physiol (1985) ; 127(2): 423-431, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31161883

RESUMO

Mechanical ventilation (MV) is a life-saving intervention, yet with prolonged MV (i.e., ≥6 h) there are time-dependent reductions in diaphragm blood flow and an impaired hyperemic response of unknown origin. Female Sprague-Dawley rats (4-8 mo, n = 118) were randomized into two groups; spontaneous breathing (SB) and 6-h (prolonged) MV. After MV or SB, vasodilation (flow-induced, endothelium-dependent and -independent agonists) and constriction (myogenic and α-adrenergic) responses were measured in first-order (1A) diaphragm resistance arterioles in vitro, and endothelial nitric oxide synthase (eNOS) mRNA expression was quantified. Following prolonged MV, there was a significant reduction in diaphragm arteriolar flow-induced (SB, 34.7 ± 3.8% vs. MV, 22.6 ± 2.0%; P ≤ 0.05), endothelium-dependent (via acetylcholine; SB, 64.3 ± 2.1% vs. MV, 36.4 ± 2.3%; P ≤ 0.05) and -independent (via sodium nitroprusside; SB, 65.0 ± 3.1% vs. MV, 46.0 ± 4.6%; P ≤ 0.05) vasodilation. Compared with SB, there was reduced eNOS mRNA expression (P ≤ 0.05). Prolonged MV diminished phenylephrine-induced vasoconstriction (SB, 37.3 ± 6.7% vs. MV, 19.0 ± 1.9%; P ≤ 0.05) but did not alter myogenic or passive pressure responses. The severe reductions in diaphragmatic blood flow at rest and during contractions, with prolonged MV, are associated with diaphragm vascular dysfunction which occurs through both endothelium-dependent and endothelium-independent mechanisms.NEW & NOTEWORTHY Following prolonged mechanical ventilation, vascular alterations occur through both endothelium-dependent and -independent pathways. This is the first study, to our knowledge, demonstrating that diaphragm arteriolar dysfunction occurs consequent to prolonged mechanical ventilation and likely contributes to the severe reductions in diaphragmatic blood flow and weaning difficulties.


Assuntos
Diafragma/fisiologia , Resistência Vascular/fisiologia , Vasodilatação/fisiologia , Acetilcolina/farmacologia , Animais , Arteríolas/efeitos dos fármacos , Arteríolas/metabolismo , Arteríolas/fisiologia , Diafragma/efeitos dos fármacos , Diafragma/metabolismo , Feminino , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Nitroprussiato/farmacologia , Fenilefrina/farmacologia , Ratos , Ratos Sprague-Dawley , Respiração Artificial/métodos , Resistência Vascular/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Vasodilatação/efeitos dos fármacos
18.
Am J Cancer Res ; 9(4): 650-667, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105994

RESUMO

Physical activity is associated with diminished risk of several cancers, and preclinical studies suggest exercise training may alter tumor cell growth in certain tissue(s) (e.g., adipose). From moderate-intensity exercise-trained rats versus sedentary controls, we hypothesized 1) there will be a decreased prostate cancer cell viability and migration in vitro and, within the prostate, a reduced 5α-reductase 2 (5αR2) and increased caspase-3 expression, and 2) that exercise training in tumor-bearing (TB) animals will demonstrate a reduced tumor cell viability in prostate-conditioned media. Serum and prostate were harvested from sedentary or exercise-trained (treadmill running, 10-11 weeks) immune-competent (Copenhagen; n = 20) and -deficient (Nude; n = 18) rats. AT-1 and PC-3 prostate cancer cells were grown in one or more of the following: serum-supplemented media (SSM), SSM from TB rats (SSM-TB), prostate-conditioned media (PCM) or PCM from TB rats (PCM-TB) for 24-96 h under normoxic (18.6% O2) or hypoxic (5% O2) conditions. Under normoxic condition, there was a decreased AT-1 cell viability in SSM and PCM from the exercise-trained (ET) immune-competent rats, but no difference in PC-3 cell viability in SSM and PCM from ET Nude rats versus the sedentary (SED) group, or in SSM-TB from ET-TB Nude rats versus the SED-TB group. However, there was a decreased PC-3 cell viability in the PCM-TB of the ET-TB group versus SED-TB group. PC-3 cell viability in all conditioned media types was not altered between groups with hypoxia. In the prostate, exercise training did not alter 5αR2 expression levels, but increased caspase-3 expression levels. In conclusion, prior exercise status reduced prostate cancer cell viability in the serum and prostate of trained rats but did not modify several other key prostate tumor cell growth characteristics (e.g., migration, cell cycle except in S phase of PC-3 cells in PCM-TB). Importantly, once the tumor was established, exercise training reduced tumor cell viability in the surrounding prostate, which may help explain the reduced severity of the disease in patients that exercise.

19.
Proc Biol Sci ; 286(1894): 20181916, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30963870

RESUMO

Latitudinal differences in timing of breeding are well documented but how such differences carry over to influence timing of events in the annual cycle of migratory birds is not well understood. We examined geographical variation in timing of events throughout the year using light-level geolocator tracking data from 133 migratory tree swallows ( Tachycineta bicolor) originating from 12 North American breeding populations. A swallow's breeding latitude influenced timing of breeding, which then carried over to affect breeding ground departure. This resulted in subsequent effects on the arrival and departure schedules at autumn stopover locations and timing of arrival at non-breeding locations. This 'domino effect' between timing events was no longer apparent by the time individuals departed for spring migration. Our range-wide analysis demonstrates the lasting impact breeding latitude can have on migration schedules but also highlights how such timing relationships can reset when individuals reside at non-breeding sites for extended periods of time.


Assuntos
Distribuição Animal , Migração Animal , Andorinhas/fisiologia , Animais , Canadá , Geografia , Reprodução , Estações do Ano , Estados Unidos
20.
Biol Lett ; 8(4): 530-2, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22357939

RESUMO

Ambient noise can mask acoustic cues, making their detection and discrimination difficult for receivers. This can result in two types of error: missed detections, when receivers fail to respond to the appropriate cues, and false alarms, when they respond to inappropriate cues. Nestling birds are error-prone, sometimes failing to beg when parents arrive with food (committing missed detections) or begging in response to stimuli other than a parent's arrival (committing false alarms). Here, we ask whether the frequency of these errors by nestling tree swallows (Tachycineta bicolor) increases in the presence of noise. We found that nestlings exposed to noise had more missed detections than their unexposed counterparts. We also found that false alarms remained low overall and did not differ significantly between noise and quiet treatments. Our results suggest that nestlings living in noisy environments may be less responsive to their parents than nestlings in quieter environments.


Assuntos
Comunicação Animal , Comportamento Alimentar/psicologia , Ruído , Andorinhas/fisiologia , Animais , Percepção Auditiva , Sinais (Psicologia) , Discriminação Psicológica/fisiologia , Comportamento de Nidação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA