Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 379(6634): 815-820, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36821693

RESUMO

Pyrocumulonimbus (pyroCb) are wildfire-generated convective clouds that can inject smoke directly into the stratosphere. PyroCb have been tracked for years, yet their apparent rarity and episodic nature lead to highly uncertain climate impacts. In situ measurements of pyroCb smoke reveal its distinctive and exceptionally stable aerosol properties and define the long-term influence of pyroCb activity on the stratospheric aerosol budget. Analysis of 13 years of airborne observations shows that pyroCb are responsible for 10 to 25% of the black carbon and organic aerosols in the "present-day" lower stratosphere, with similar impacts in both the North and South Hemispheres. These results suggest that, should pyroCb increase in frequency and/or magnitude in future climates, they could generate dominant trends in stratospheric aerosol.

2.
J Environ Radioact ; 184-185: 95-100, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29407642

RESUMO

We describe a submicron aerosol particle sampled at an altitude of 7 km near the Aleutian Islands that contained a small percentage of enriched uranium oxide. 235U was 3.1 ±â€¯0.5% of 238U. During twenty years of aircraft sampling of millions of particles in the global atmosphere, we have rarely encountered a particle with a similarly high content of 238U and never a particle with enriched 235U. The bulk of the particle consisted of material consistent with combustion of heavy fuel oil. Analysis of wind trajectories and particle dispersion model results show that the particle could have originated from a variety of areas across Asia. The source of such a particle is unclear, and the particle is described here in case it indicates a novel source where enriched uranium was dispersed.


Assuntos
Aerossóis/análise , Poluentes Radioativos do Ar/análise , Monitoramento de Radiação , Urânio/análise , Alaska , Atmosfera/química
3.
Bull Am Meteorol Soc ; 98(1): 106-128, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29636590

RESUMO

The Convective Transport of Active Species in the Tropics (CONTRAST) experiment was conducted from Guam (13.5° N, 144.8° E) during January-February 2014. Using the NSF/NCAR Gulfstream V research aircraft, the experiment investigated the photochemical environment over the tropical western Pacific (TWP) warm pool, a region of massive deep convection and the major pathway for air to enter the stratosphere during Northern Hemisphere (NH) winter. The new observations provide a wealth of information for quantifying the influence of convection on the vertical distributions of active species. The airborne in situ measurements up to 15 km altitude fill a significant gap by characterizing the abundance and altitude variation of a wide suite of trace gases. These measurements, together with observations of dynamical and microphysical parameters, provide significant new data for constraining and evaluating global chemistry climate models. Measurements include precursor and product gas species of reactive halogen compounds that impact ozone in the upper troposphere/lower stratosphere. High accuracy, in-situ measurements of ozone obtained during CONTRAST quantify ozone concentration profiles in the UT, where previous observations from balloon-borne ozonesondes were often near or below the limit of detection. CONTRAST was one of the three coordinated experiments to observe the TWP during January-February 2014. Together, CONTRAST, ATTREX and CAST, using complementary capabilities of the three aircraft platforms as well as ground-based instrumentation, provide a comprehensive quantification of the regional distribution and vertical structure of natural and pollutant trace gases in the TWP during NH winter, from the oceanic boundary to the lower stratosphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA