Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2457: 285-298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35349148

RESUMO

Plasmodesmata (PD) are membrane-lined channels that cross the cell wall to connect the cytosol of adjacent plant cells, permitting diverse cytosolic molecules to move between cells. PD are essential for plant multicellularity, and the regulation of PD transport contributes to metabolism, developmental patterning, abiotic stress responses, and pathogen defenses, which has sparked broad interest in PD among diverse plant biologists. Here, we present a straightforward method to reproducibly quantify changes in the rate of PD transport in leaves. Individual cells are transformed with Agrobacterium to express fluorescent proteins, which then move beyond the transformed cell via PD. Forty-eight to 72 h later, the extent of GFP movement is monitored by confocal fluorescence microscopy. This assay is versatile and may be combined with transient gene overexpression, virus-induced gene silencing, physiological treatments, or pharmaceutical treatments to test how PD transport responds to specific conditions. We expect that this improved method for monitoring PD transport in leaves will be broadly useful for plant biologists working in diverse fields.


Assuntos
Folhas de Planta , Plasmodesmos , Agrobacterium/genética , Células Vegetais/metabolismo , Folhas de Planta/metabolismo , Plantas , Plasmodesmos/metabolismo
2.
Front Plant Sci ; 12: 674128, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135930

RESUMO

Plant cells are connected by plasmodesmata (PD), nanoscopic channels in cell walls that allow diverse cytosolic molecules to move between neighboring cells. PD transport is tightly coordinated with physiology and development, although the range of signaling pathways that influence PD transport has not been comprehensively defined. Several plant hormones, including salicylic acid (SA) and auxin, are known to regulate PD transport, but the effects of other hormones have not been established. In this study, we provide evidence that cytokinins promote PD transport in leaves. Using a green fluorescent protein (GFP) movement assay in the epidermis of Nicotiana benthamiana, we have shown that PD transport significantly increases when leaves are supplied with exogenous cytokinins at physiologically relevant concentrations or when a positive regulator of cytokinin responses, ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 5 (AHP5), is overexpressed. We then demonstrated that silencing cytokinin receptors, ARABIDOPSIS HISTIDINE KINASE 3 (AHK3) or AHK4 or overexpressing a negative regulator of cytokinin signaling, AAHP6, significantly decreases PD transport. These results are supported by transcriptomic analysis of mutants with increased PD transport (ise1-4), which show signs of enhanced cytokinin signaling. We concluded that cytokinins contribute to dynamic changes in PD transport in plants, which will have implications in several aspects of plant biology, including meristem patterning and development, regulation of the sink-to-source transition, and phytohormone crosstalk.

3.
Development ; 143(7): 1087-98, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26893342

RESUMO

Maintaining neurogenesis in growing tissues requires a tight balance between progenitor cell proliferation and differentiation. In the zebrafish retina, neuronal differentiation proceeds in two stages with embryonic retinal progenitor cells (RPCs) of the central retina accounting for the first rounds of differentiation, and stem cells from the ciliary marginal zone (CMZ) being responsible for late neurogenesis and growth of the eye. In this study, we analyse two mutants with small eyes that display defects during both early and late phases of retinal neurogenesis. These mutants carry lesions in gdf6a, a gene encoding a BMP family member previously implicated in dorsoventral patterning of the eye. We show that gdf6a mutant eyes exhibit expanded retinoic acid (RA) signalling and demonstrate that exogenous activation of this pathway in wild-type eyes inhibits retinal growth, generating small eyes with a reduced CMZ and fewer proliferating progenitors, similar to gdf6a mutants. We provide evidence that RA regulates the timing of RPC differentiation by promoting cell cycle exit. Furthermore, reducing RA signalling in gdf6a mutants re-establishes appropriate timing of embryonic retinal neurogenesis and restores putative stem and progenitor cell populations in the CMZ. Together, our results support a model in which dorsally expressed gdf6a limits RA pathway activity to control the transition from proliferation to differentiation in the growing eye.


Assuntos
Fator 6 de Diferenciação de Crescimento/genética , Neurogênese/genética , Retina/embriologia , Tretinoína/metabolismo , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Ciclo Celular/genética , Proliferação de Células , Embrião não Mamífero/embriologia , Neurogênese/fisiologia , Transdução de Sinais/genética , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA