Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 155(1): 575-587, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38259125

RESUMO

This paper reports on the use of a circular microphone array to analyze the reflections from a pipe defect with enhanced resolution. A Bayesian maximum a posteriori algorithm is combined with the mode decomposition approach to localize pipe defects with six or fewer microphones. Unlike all previous acoustic reflectometry techniques, which only estimate the location of a pipe defect along the pipe, the proposed method uses the phase information about the wave propagated in the form of the first non-axisymmetric mode to estimate its circumferential position as well as axial location. The method is validated against data obtained from a laboratory measurement in a 150 mm diameter polyvinyl chloride pipe with a 20% in-pipe blockage and 100 mm lateral connection. The accuracy of localization of the lateral connection and blockage attained in this measurement was better than 2% of the axial sensing distance and 9° error in terms of the circumferential position. The practical significance of this approach is that it can be implemented remotely on an autonomous inspection robot so that accurate axial location and circumferential position of lateral connections and small blockages can be estimated with a computationally efficient algorithm.

2.
J Acoust Soc Am ; 153(1): 367, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36732233

RESUMO

An acoustic method for simultaneous condition detection, localization, and classification in air-filled pipes is proposed. The contribution of this work is threefold: (1) a microphone array is used to extend the usable acoustic frequency range to estimate the reflection coefficient from blockages and lateral connections; (2) a robust regularization method of sparse representation based on a wavelet basis function is adapted to reduce the background noise in acoustical data; and (3) the wavelet components are used to localize and classify the condition of the pipe. The microphone array and sparse representation method enhance the acoustical signal reflected from blockages and lateral connections and suppress unwanted higher-order modes. Based on the sparse representation results, higher-level wavelet functions representing the impulse response are used to localize the position of the sensor corresponding to a blockage or lateral connection with higher spatial resolution. It is shown that the wavelet components can be used to train and to test a support vector machine (SVM) classifier for the condition identification more accurately than with a time domain SVM classifier. This work paves the way for the development of simultaneous condition classification and localization methods to be deployed on autonomous robots working in buried pipes.

3.
JASA Express Lett ; 2(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37311187

RESUMO

Acoustic surface admittance/impedance at domain boundaries is essential for wave-based acoustic simulations. This work applies two levels of Bayesian inference to estimate the order and the parameter values of the multipole admittance model. The frequency-dependent acoustic admittance is experimentally measured. Incorporating the maximum entropy strategy, the unified Bayesian framework is applied to the multipole approximation. Analysis results demonstrate that multipole model-based Bayesian inference is well suited to estimating the arbitrary frequency-dependent boundary condition within a wave-based simulation framework.

4.
Sensors (Basel) ; 21(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430049

RESUMO

Combined sewer overflow structures (CSO) play an important role in sewer networks. When the local capacity of a sewer system is exceeded during intense rainfall events, they act as a "safety valve" and discharge excess rainfall run-off and wastewater directly to a natural receiving water body, thus preventing widespread urban flooding. There is a regulatory requirement that solids in CSO spills must be small and their amount strictly controlled. Therefore, a vast majority of CSOs in the UK contain screens. This paper presents the results of a feasibility study of using low-cost, low-energy acoustic sensors to remotely assess the condition of CSO screens to move to cost-effective reactive maintenance visits. In situ trials were carried out in several CSOs to evaluate the performance of the acoustic sensor under realistic screen and flow conditions. The results demonstrate that the system is robust within ±2.5% to work successfully in a live CSO environment. The observed changes in the screen condition resulted in 8-39% changes in the values of the coefficient in the proposed acoustic model. These changes are detectable and consistent with observed screen and hydraulic data. This study suggested that acoustic-based sensing can effectively monitor the CSO screen blockage conditions and hence reduce the risk of non-compliant CSO spills.

7.
J Acoust Soc Am ; 145(4): 2512, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31046383

RESUMO

Many models for the prediction of the acoustical properties of porous media require non-acoustical parameters few of which are directly measurable. One popular prediction model by Johnson, Champoux, Allard, and Lafarge [J. Appl. Phys. 70(4), 1975-1979 (1991)] (459 citations, Scopus, April 2019) requires six non-acoustical parameters. This paper proves that the use of more than three parameters in the Johnson-Champoux-Allard-Lafarge model is not necessary at all. Here the authors present theoretical and experimental evidence that the acoustical impedance of a range of porous media with pore size distribution close to log-normal (granular, fibrous, and foams) can be predicted through the knowledge of the porosity, median pore size, and standard deviation in the pore size only. A unique feature of this paper is that it effectively halves the number of parameters required to predict the acoustical properties of porous media very accurately. The significance of this paper is that it proposes an unambiguous relationship between the pore microstructure and key acoustical properties of porous media with log-normal pore size distribution. This unique model is well suited for using acoustical data for measuring and inverting key non-acoustical properties of a wider range of porous media used in a range of applications which are not necessarily acoustic.

8.
Sensors (Basel) ; 18(4)2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29621139

RESUMO

The pattern of the free surface of the turbulent flow in a partially filled circular pipe contains information on the underlying hydraulic processes. However, the roughness of the free surface of flow and its temporal variation in a pipe is a dynamic and non-stationary process that is difficult to measure directly. This work examines a new acoustic method that is used to study the characteristics of the free surface roughness under controlled laboratory conditions. The acoustic method makes use of a continuous sine wave that is transmitted through the air above the turbulent flow of water over a section of the pipe instrumented with an array of wave probes and microphones. The results obtained for a representative range of flow regimes and variety of pipe bed conditions illustrate that it is possible to unambiguously relate variations in the recorded acoustic field to the standard deviation in the free surface roughness and mean flow depth. These variations are clearly linked to the hydraulic friction factor of the pipe, which is shown to be related to airborne acoustic data obtained non-invasively.

9.
J Acoust Soc Am ; 144(6): 3582, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30599691

RESUMO

In many acoustical applications, porous materials may be stratified or physically anisotropic along their depth direction. In order to better understand the sound absorbing mechanisms of these porous media, the depth-dependent anisotropy can be approximated as a multilayer combination of finite-thickness porous materials with each layer being considered as isotropic. The uniqueness of this work is that it applies Bayesian probabilistic inference to determine the number of constituent layers in a multilayer porous specimen and macroscopic properties of their pores. This is achieved through measurement of the acoustic surface impedance and subsequent transfer-matrix analysis based on a valid theoretical model for the acoustical properties of porous media. The number of layers considered in the transfer-matrix analysis is varied, and Bayesian model selection is applied to identify individual layers present in the porous specimen and infer the parameters of their microstructure. Nested sampling is employed in this process to solve the computationally intensive inversion problem.

10.
J Acoust Soc Am ; 141(2): 945, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28253657

RESUMO

There is a considerable number of research publications on the characterization of porous media that is carried out in accordance with ISO 10534-2 (International Standards Organization, Geneva, Switzerland, 2001) and/or ISO 9053 (International Standards Organization, Geneva, Switzerland, 1991). According to the Web of ScienceTM (last accessed 22 September 2016) there were 339 publications in the Journal of the Acoustical Society of America alone which deal with the acoustics of porous media. However, the reproducibility of these characterization procedures is not well understood. This paper deals with the reproducibility of some standard characterization procedures for acoustic porous materials. The paper is an extension of the work published by Horoshenkov, Khan, Bécot, Jaouen, Sgard, Renault, Amirouche, Pompoli, Prodi, Bonfiglio, Pispola, Asdrubali, Hübelt, Atalla, Amédin, Lauriks, and Boeckx [J. Acoust. Soc. Am. 122(1), 345-353 (2007)]. In this paper, independent laboratory measurements were performed on the same material specimens so that the naturally occurring inhomogeneity in materials was controlled. It also presented the reproducibility data for the characteristic impedance, complex wavenumber, and for some related pore structure properties. This work can be helpful to better understand the tolerances of these material characterization procedures so improvements can be developed to reduce experimental errors and improve the reproducibility between laboratories.

11.
J Acoust Soc Am ; 142(6): 3387, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29289079

RESUMO

Measurements of the Doppler spectra of airborne ultrasound backscattered by the rough dynamic surface of a shallow turbulent flow are presented in this paper. The interpretation of the observed acoustic signal behavior is provided by means of a Monte Carlo simulation based on the Kirchhoff approximation and on a linear random-phase model of the water surface elevation. Results suggest that the main scattering mechanism is from capillary waves with small amplitude. Waves that travel at the same velocity of the flow, as well as dispersive waves that travel at a range of velocities, are detected, studied, and used in the acoustic Doppler analysis. The dispersive surface waves are not observed when the flow velocity is slow compared to their characteristic velocity. Relatively wide peaks in the experimental spectra also suggest the existence of nonlinear modulations of the short capillary waves, or their propagation in a wide range of directions. The variability of the Doppler spectra with the conditions of the flow can affect the accuracy of the flow velocity estimations based on backscattering Doppler. A set of different methods to estimate this velocity accurately and remotely at different ranges of flow conditions is suggested.

12.
J Acoust Soc Am ; 140(3): 2064, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27914380

RESUMO

Currently, there is no airborne in situ method to reconstruct with high fidelity the instantaneous elevation of a dynamically rough surface of a turbulent flow. This work proposes a holographic method that reconstructs the elevation of a one-dimensional rough water surface from airborne acoustic pressure data. This method can be implemented practically using an array of microphones deployed over a dynamically rough surface or using a single microphone which is traversed above the surface at a speed that is much higher than the phase velocity of the roughness pattern. In this work, the theory is validated using synthetic data calculated with the Kirchhoff approximation and a finite difference time domain method over a number of measured surface roughness patterns. The proposed method is able to reconstruct the surface elevation with a sub-millimeter accuracy and over a representatively large area of the surface. Since it has been previously shown that the surface roughness pattern reflects accurately the underlying hydraulic processes in open channel flow [e.g., Horoshenkov, Nichols, Tait, and Maximov, J. Geophys. Res. 118(3), 1864-1876 (2013)], the proposed method paves the way for the development of non-invasive instrumentation for flow mapping and characterization that are based on the acoustic holography principle.

13.
J Acoust Soc Am ; 139(5): 2463, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27250142

RESUMO

Modeling of sound propagation in porous media requires the knowledge of several intrinsic material parameters, some of which are difficult or impossible to measure directly, particularly in the case of a porous medium which is composed of pores with a wide range of scales and random interconnections. Four particular parameters which are rarely measured non-acoustically, but used extensively in a number of acoustical models, are the viscous and thermal characteristic lengths, thermal permeability, and Pride parameter. The main purpose of this work is to show how these parameters relate to the pore size distribution which is a routine characteristic measured non-acoustically. This is achieved through the analysis of the asymptotic behavior of four analytical models which have been developed previously to predict the dynamic density and/or compressibility of the equivalent fluid in a porous medium. In this work the models proposed by Johnson, Koplik, and Dashn [J. Fluid Mech. 176, 379-402 (1987)], Champoux and Allard [J. Appl. Phys. 70(4), 1975-1979 (1991)], Pride, Morgan, and Gangi [Phys. Rev. B 47, 4964-4978 (1993)], and Horoshenkov, Attenborough, and Chandler-Wilde [J. Acoust. Soc. Am. 104, 1198-1209 (1998)] are compared. The findings are then used to compare the behavior of the complex dynamic density and compressibility of the fluid in a material pore with uniform and variable cross-sections.

14.
J Acoust Soc Am ; 134(5): 3674-85, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24180778

RESUMO

Acoustic intensity is normally treated as a real quantity, but in recent years, many articles have appeared in which intensity is treated as a complex quantity where the real (active) part is related to local mean energy flow and the imaginary (reactive) part to local oscillatory transport of energy. This offers the potential to recover additional information about a sound field and then to relate this to the properties of the sound source and the environment that surrounds it. However, this approach is applicable only to multi-modal sound fields, which places significant demands on the accuracy of the intensity measurements. Accordingly, this article investigates the accuracy of complex intensity measurements obtained using a tri-axial Microflown intensity probe by comparing measurement and prediction for sound propagation in an open flanged pipe. Under plane wave conditions, comparison between prediction and experiment reveals good agreement, but when a higher order mode is present, the reactive intensity field becomes complicated and agreement is less successful. It is concluded that the potential application of complex intensity as a diagnostic tool is limited by difficulties in measuring reactive intensity in complex sound fields when using current state of the art acoustic instrumentation.


Assuntos
Acústica , Som , Acústica/instrumentação , Desenho de Equipamento , Modelos Teóricos , Movimento (Física) , Pressão , Reprodutibilidade dos Testes , Fatores de Tempo
15.
J Acoust Soc Am ; 134(2): 939-49, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23927093

RESUMO

In this paper a derivation of the attenuation factor in a waveguide with stochastic walls is presented. The perturbation method and Fourier analysis are employed to derive asymptotically consistent boundary-value problems at each asymptotic order. The derived approximation predicts the attenuation of the propagating mode in a rough waveguide through a correction to the eigenvalue corresponding to smooth walls. The proposed approach can be used to derive results that are consistent with those obtained by Bass et al. [IEEE Trans. Antennas Propag. 22, 278-288 (1974)]. The novelty of the method is that it does not involve the integral Dyson-type equation and, as a result, the large number of statistical moments included in the equation in the form of the mass operator of the volume scattering theory. The derived eigenvalue correction is described by the correlation function of the randomly rough surface. The averaged solution in the plane wave regime is approximated by the exponential function dependent on the derived eigenvalue correction. The approximations are compared with numerical results obtained using the finite element method (FEM). An approach to retrieve the correct deviation in roughness height and correlation length from multiple numerical realizations of the stochastic surface is proposed to account for the oversampling of the rough surface occurring in the FEM meshing procedure.


Assuntos
Acústica , Som , Simulação por Computador , Análise de Elementos Finitos , Análise de Fourier , Modelos Estatísticos , Movimento (Física) , Análise Numérica Assistida por Computador , Espalhamento de Radiação , Processos Estocásticos , Fatores de Tempo
16.
J Acoust Soc Am ; 133(5): 2554-65, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23654364

RESUMO

The plane wave normal incidence acoustic absorption coefficient of five types of low growing plants is measured in the presence and absence of soil. These plants are generally used in green living walls and flower beds. Two types of soil are considered in this work: a light-density, man-made soil and a heavy-density natural clay base soil. The absorption coefficient data are obtained in the frequency range of 50-1600 Hz using a standard impedance tube of diameter 100 mm. The equivalent fluid model for sound propagation in rigid frame porous media proposed by Miki [J. Acoust. Soc. Jpn. (E) 11, 25-28 (1990)] is used to predict the experimentally observed behavior of the absorption coefficient spectra of soils, plants, and their combinations. Optimization analysis is employed to deduce the effective flow resistivity and tortuosity of plants which are assumed to behave acoustically as an equivalent fluid in a rigid frame porous medium. It is shown that the leaf area density and dominant angle of leaf orientation are two key morphological characteristics which can be used to predict accurately the effective flow resistivity and tortuosity of plants.


Assuntos
Acústica , Folhas de Planta/fisiologia , Som , Absorção , Algoritmos , Modelos Teóricos , Movimento (Física) , Folhas de Planta/crescimento & desenvolvimento , Porosidade , Solo/química , Espectrografia do Som
17.
J Acoust Soc Am ; 134(6): 4589, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25669270
18.
J Acoust Soc Am ; 134(6): 4698, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25669282

RESUMO

Hemp concrete is an attractive alternative to traditional materials used in building construction. It has a very low environmental impact, and it is characterized by high thermal insulation. Hemp aggregate particles are parallelepiped in shape and can be organized in a plurality of ways to create a considerable proportion of open pores with a complex connectivity pattern, the acoustical properties of which have never been examined systematically. Therefore this paper is focused on the fundamental understanding of the relations between the particle shape and size distribution, pore size distribution, and the acoustical properties of the resultant porous material mixture. The sound absorption and the transmission loss of various hemp aggregates is characterized using laboratory experiments and three theoretical models. These models are used to relate the particle size distribution to the pore size distribution. It is shown that the shape of particles and particle size control the pore size distribution and tortuosity in shiv. These properties in turn relate directly to the observed acoustical behavior.

19.
J Acoust Soc Am ; 123(3): 1248-59, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18345814

RESUMO

The attenuation of axisymmetric eigenmodes in a cylindrical, elastic, fluid-filled waveguide with a statistically rough elastic wall is studied. It is shown that small perturbation theory can be used to relate explicitly the statistical characteristics of the internal wall surface roughness of an elastic pipe to the attenuation and scattering coefficients of the acoustic modes in the filling fluid. Analytical expressions for modal attenuation coefficients are obtained. The analysis of the frequency dependent attenuation coefficients and the ratio between the roughness correlation length and the inner radius of the pipe is made for different correlation functions of the roughness. It is shown that two scale parameters control the overall behavior of the modal attenuation coefficients. These are the ratios of the roughness correlation length and the inner pipe radius to the acoustic wavelength. The numerical results for sound propagation in a pipe and in a borehole with statistically rough, elastic walls are obtained and discussed.


Assuntos
Acústica , Elasticidade , Modelos Teóricos , Água
20.
J Vis ; 7(13): 5.1-8, 2007 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-17997633

RESUMO

A controversial hypothesis within the domain of sensory research is that observers are able to use visual and auditory distance cues to maintain perceptual synchrony--despite the differential velocities of light and sound. Here we show that observers are categorically unable to utilize such distance cues. Nevertheless, given a period of adaptation to the naturally occurring audiovisual asynchrony associated with each viewing distance, a temporal recalibration mechanism helps to perceptually compensate for the effects of distance-induced auditory delays. These effects demonstrate a novel functionality of temporal recalibration with clear ecological benefits.


Assuntos
Adaptação Fisiológica/fisiologia , Percepção Auditiva/fisiologia , Percepção de Distância/fisiologia , Percepção Visual/fisiologia , Calibragem , Sinais (Psicologia) , Humanos , Modelos Biológicos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA